Assignment 8 – Parts 1, 2, & 3 – Math 411

- (1) Let V be a vector space over F, let $\alpha \in F$, and let $T_{\alpha} : V \to V$ be the linear transformation $v \mapsto \alpha v$. Prove the following properties we discussed in class.
 - (a) $T_0 = 0$
 - (b) $T_1 = 1$
 - (c) $T_{\alpha_1+\alpha_2} = T_{\alpha_1} + T_{\alpha_2}$
 - (d) $T_{\alpha_1\alpha_2} = T_{\alpha_1}T_{\alpha_2}$

(Remark: these show that F can be thought of as a "subalgebra" of End(V).)

- (2) Let $T: V \to W$ be a linear transformation. Prove the following statements (without assuming V and W are finite-dimensional).
 - (a) If $\dim(V) < \dim(W)$, then T cannot be surjective.
 - (b) If $\dim(V) > \dim(W)$, then T cannot be injective.
- (3) Let $V = \mathbf{R}[x]_{\leq 3}$ be the **R**-vector space of polynomials over **R** of degree at most 3 and let $\mathcal{B} := \{1, x, (3x^2 - 1)/2, (5x^3 - 3x)/2\}$, so that \mathcal{B} is a basis of V.
 - (a) Find the matrix $_{\mathcal{B}}[I]_{\mathcal{B}}$ of the bilinear form

$$I(f(x), g(x)) = \int_{-1}^{1} f(x)g(x)dx$$

- (b) What is the matrix of I with respect to the standard basis $\{1, x, x^2, x^3\}$ of V.
- (4) For a < b in \mathbf{R} , let $V = \mathcal{C}([a, b], \mathbf{R})$ be the \mathbf{R} -vector space of continuous functions from the closed interval [a, b] to \mathbf{R} and let w(x) be a fixed function in V. Define the following function $I: V \times V \to \mathbf{R}$

$$I(f(x), g(x)) = \int_a^b f(x)g(x)w(x)dx.$$

- (a) Show that I(x) is a bilinear form.
- (b) Take a = 0 and $b = \pi$, let $f_n(x) = \cos(nx)$ for n = 0, 1, 2, and let $W = \text{Span}(f_0, f_1, f_2) \leq V$. Consider I as a bilinear form $W \times W \to \mathbf{R}$ and find the matrix of I with respect to the basis $\{f_0, f_1, f_2\}$ of W.