Assignment 11 – Part 1 – Math 612

Throughout, assume all rings are commutative.

(1) Let R be a commutative ring. Recall that the polynomial ring R[x, y] satisfies a universal property stemming from the fact that it is the free commutative R-algebra on two elements, i.e. for every R-algebra A, there is a natural bijection

 $\operatorname{Hom}_{R\text{-}\operatorname{alg}}(R[x, y], A) \cong \operatorname{Hom}_{\operatorname{\mathbf{Set}}}(\{x, y\}, A).$

In class, we stated that $R[x] \otimes_R R[y] \cong R[x, y]$. Prove this by showing that $R[x] \otimes_R R[y]$ satisfies the same universal property as R[x, y].

- (2) Determine the following tensor products.
 - (a) $\mathbf{Q}(i) \otimes_{\mathbf{Q}} \mathbf{R}$
 - (b) $\mathbf{Q}(i) \otimes_{\mathbf{Q}} \mathbf{C}$
 - (c) $\mathbf{Q}(i) \otimes_{\mathbf{Q}} \mathbf{Q}(i)$
 - (d) $\mathbf{Q}(i) \otimes_{\mathbf{Q}} \mathbf{Q}(\sqrt{2})$
 - (e) $\mathbf{Z}[i] \otimes_{\mathbf{Z}} \mathbf{F}_2$
 - (f) $\mathbf{Z}[i] \otimes_{\mathbf{Z}} \mathbf{F}_3$
 - (g) $\mathbf{Z}[i] \otimes_{\mathbf{Z}} \mathbf{F}_5$