Assignment 6 – All 2 parts – Math 612

Due in class: Thursday, Feb. 25, 2016

(1) Let $d \in \mathbf{Z}$ be squarefree and let $K_d = \mathbf{Q}(\sqrt{d})$. Let

$$\mathcal{O}_d = \begin{cases} \left\{ a + b\sqrt{d} \in K_d : a, b \in \mathbf{Z} \right\} & \text{if } d \equiv 2, 3 \pmod{4} \\ \left\{ a + b\left(\frac{1 + \sqrt{d}}{2}\right) \in K_d : a, b \in \mathbf{Z} \right\} & \text{if } d \equiv 1 \pmod{4}. \end{cases}$$

For $\alpha \in K_d$, show that $\operatorname{Tr}_{K_d/\mathbf{Q}}(\alpha), N_{K_d/\mathbf{Q}}(\alpha) \in \mathbf{Z}$ if and only if $\alpha \in O_d$.

- (2) Let $K = \mathbf{Q}(\sqrt[3]{2})$. What are $N_{K/\mathbf{Q}}(\sqrt[3]{2})$ and $\operatorname{Tr}_{K/\mathbf{Q}}(\sqrt[3]{2})$?
- (3) Let p be a prime. Show that all finite p-groups (that is, groups of order p^n for some n) are solvable. (Hint: recall that the centre of a p-group is non-trivial.)
- (4) Let F be a field of characteristic 0. For a finite extension K/F, we will say that K/F is solvable by radicals if K is contained in a field E such that E/F is a root extension (recall from class that E/F is a root extension if E/F is finite and is at the top of a tower $E = E_m/E_{m-1}/\cdots/E_1/E_0 = F$ such that $E_i = E_{i-1}(\sqrt[n_i]{a_i})$ for some $a_i \in E_{i-1}$). Show that the class of finite extensions of F that are solvable by radicals forms a distinguished class of extensions.
- (5) Recall that in class we defined a finite group G to be solvable if it has a filtration

$$G = G_0 \ge G_1 \ge \dots \ge G_m = 1$$

such that G_i/G_{i+1} is cyclic. Show that a finite group G is solvable if and only if it has a filtration

$$G = G_0 \ge G_1 \ge \dots \ge G_n = 1$$

such that G_i/G_{i+1} is abelian.

(6) Given a group G and two element $g, h \in G$, their commutator is $[g, h] := g^{-1}h^{-1}gh$. For two subsets $S, T \subseteq G$, define their commutator subgroup to be

$$[S,T] := \langle [s,t] : s \in S, t \in T \rangle \le G.$$

Define the commutator subgroup of G to be $G^{(1)} := [G, G]$ (also called the *derived* subgroup and denoted G^{der} or even G').

- (a) Show that [G, G] is a normal subgroup of G and that G/[G, G] is abelian.
- (b) Show that G/[G,G] is the maximal abelian quotient of G, meaning that if $H \leq G$ and G/H is abelian, then $[G,G] \leq H$ (so that G/[G,G] surjects onto G/H).
- (c) The derived series of G is the filtration $G = G^{(0)} \ge G^{(1)} \ge G^{(2)} \ge \cdots$ where, for $i \ge 1$,

$$G^{(i)} := [G^{(i-1)}, G^{(i-1)}].$$

Show that if $G^{(n)} = 1$ for some $n \ge 0$, then G is solvable.

- (d) Conversely, show that if G is solvable, then $G^{(n)} = 1$ for some n. (Hint: if $G = G_0 \ge G_1 \ge \cdots \ge G_m = 1$ is a filtration such that G_i/G_{i+1} is abelian, show that $G^{(i)} \le G_i$.)
- (e) This is just a remark, I won't make you prove these things, though they are not difficult. Suppose

$$1 \to N \to G \to H \to 1$$

is a short exact sequence of groups. Then,

G is solvable if and only if both H and N are solvable.

In fact, one can show that $G^{(i)} \mod N = (G/N)^{(i)}$ and, for any subgroup N of G, normal or not, $N^{(i)} \leq G^{(i)}$.