
Assignment 9 – All 2 parts – Math 612

Due in class: Thursday, Apr. 14, 2016

(1) Let R be a commutative ring and let M and N be two R-modules.

(a) Let m⊗n ∈M ⊗RN . Show that m⊗n = 0 if and only if for all R-modules X

and all R-bilinear forms ψ : M ×N → X, we have ψ(m,n) = 0. (Hint: recall

that the natural map ψuniv : M × N → M ⊗R N sending (m,n) to m ⊗ n is

itself an R-bilinear map.)

(b) Show that M ⊗R N = 0 if and only if for all R-modules X and all R-bilinear

forms ψ : M ×N → X, we have ψ(m,n) = 0 for all (m,n) ∈M ×N .

(2) In this exercise, you’ll prove the following property of tensor products stated in class:

let R be a commutative ring, let I be an ideal in R, and let M be an R-module,

then

R/I ⊗RM ∼= M/IM.

(a) First, show that every element of R/I⊗RM is a pure tensor of the form 1⊗m.

(b) Now, show that R/I⊗RM ∼= M/IM . (Hint: to get the map from left to right,

consider the map R/I ×M → M/IM sending (r + I,m) to rm + IM). Part

(a) is helpful in getting a map from right to left).

(3) Again, let R be a commutative ring.

(a) Suppose I is an ideal of R that contains a non-zero element that is not a zero

divisor. Show that R/I is not flat.

(b) Suppose M is a flat R-module. Show that M is torsion-free (recall that torsion-

free means that for all m 6= 0 in M and all r 6= 0 in R, rm = 0 implies r is a

zero-divisor).

(4) In the Snake lemma, we have the commutative diagram

M1
//

d1
��

M2
//

d2
��

M3
//

d3
��

0

0 // N1
// N2

// N3

whose rows are exact and obtained an exact sequence

ker d1 −→ ker d2 −→ ker d3
δ−→ coker d1 −→ coker d2 −→ coker d3.
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(a) In class, we showed the exactness at ker d3. Show exactness at ker d2, coker d1,

and coker d2.

(b) Show that if M1 → M2 is injective, then so is ker d1 → ker d2. Show that if

N2 → N3 is surjective, then so is coker d2 → coker d3.

(5) Baer’s criterion. Recall that an R-module I is called injective if given any injective

homomorphism M → N of R-modules, any homomorphism M → I can be extended

to a homomorphism N → I making the diagram

I

0 //M //

>>||||||||
N

OO

commute. Prove Baer’s criterion: I is injective if and only if for every non-zero ideal

J of R, any R-module homomorphism J → I can be extended to a homomorphism

R→ I making the diagram

I

0 // J //

??��������
R

OO

(Hint: for the hard direction, you’ll want to use Zorn’s lemma. Specifically, given

an injective homomorphism M → N , which we’ll just think of as M ⊆ N , and a

homomorphism ϕ : M → I, consider the partially ordered set X of pairs (N ′, ϕ′)

such that ϕ′ extends ϕ part of the way to N , i.e. M ⊆ N ′ ⊆ N and we have the

commutative diagram

I

0 //M //

ϕ

66mmmmmmmmmmmmmmmm
N ′

ϕ′

>>

// N

commute. We define (N ′, ϕ′) ≤ (N ′′, ϕ′′) if N ′ ⊆ N ′′ and ϕ′′|N ′ = ϕ′. You want to

show a maximal element of X is the map N → I you want. You need to reduce

this to the statement for ideals. If (N ′, ϕ′) is a maximal element and there is an

n′ ∈ N \N ′, consider the ideal J ′ := {r ∈ R : rn′ ∈ N ′}.)

(6) An R-module D is called divisible if for every non-zero r ∈ R that is not a zero-

divisor and every d ∈ D, there is a d′ ∈ D such that d = rd′ (i.e. you can ‘divide by

r’, though the answer need not be unique). Equivalently, D is divisible if for all r

as above, the ‘multiplication by r’ map mr : D → D sending d to rd is surjective.

(a) Show that an injective R-module I is divisible. (Hint: if d ∈ I and r ∈ R is

2



a non-zero non-zerodivisor, consider the R-linear map ϕd : Rr → I defined by

sending ar to ad.)

(b) Conversely, suppose R is a PID and show that if D is divisible, then it is

injective. (Hint: use Baer’s criterion, then you can do something similar to

part (a).)

(c) Conclude that Q and Q/Z are injective Z-modules, but, for all n ∈ Z≥2, Z/nZ

is not an injective Z-module and neither is Z itself.

(7) Ext1Z(Z/mZ,Z/nZ). In this exercise, you’ll compute the Z-module Ext1Z(Z/mZ,Z/nZ)

for m,n ∈ Z≥2. Recall that Ext1Z(−,Z/nZ) is the first right derived functor of

HomZ(−,Z/nZ) and hence the Ext groups can be computed by taking an injective

resolution of Z/nZ.

(a) Show that

0 // Z/nZ //Q/Z //Q/Z // 0

1 � // 1
n

+ Z

a+ Z � // na+ Z

is an injective resolution of Z/nZ.

(b) Show that HomZ(Z/mZ,Q/Z) ∼= ( 1
m
Z)/Z ∼= Z/mZ.

(c) Applying HomZ(Z/mZ,−) to the complex

0 //Q/Z //Q/Z // 0

you get the complex

0 // HomZ(Z/mZ,Q/Z) d0 // HomZ(Z/mZ,Q/Z) d1 // 0.

Recall that Ext1Z(Z/mZ,Z/nZ) := ker d1/ im d0. Show that

Ext1Z(Z/mZ,Z/nZ) ∼= (Z/mZ)
/

(n(Z/mZ)) ∼= Z/ gcd(m,n)Z.

(d) This is just a remark. There is a nice interpretation of Ext1R(M,N). Given

two R-modules M and N , an extension of M by N is an R-module E together

with a short exact sequence

0 // N // E //M // 0.
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Two extensions E and E ′ are called equivalent if there is a commutative dia-

gram

0 // N // E //

��

M // 0

0 // N // E ′ //M // 0

where the double vertical lines are equals signs indicating that those maps are

the identity maps (this diagram implies the middle map is an isomorphism).

The set of equivalence classes of extensions is made into an abelian group using

the so-called Baer sum. This group is isomorphic to Ext1R(M,N), hence the

name of the latter. The isomorphism is given ‘explicitly’ as follows. Given the

short exact sequence

0 // N // E //M // 0.

and applying HomR(M,−), the long exact sequence in cohomology includes

the connecting homomorphism

HomR(M,M) δ // Ext1R(M,N).

The isomorphism is obtained by sending the extension E to δ(idM).
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