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CHAPTER 1

Fields and Galois theory

1. Field extensions

(Note: these notes loosely follow Lang’s Algebra)
We will follow the typical course and study field extensions. This subject grows out of the study of

roots of polynomials. The setup is to fix a field F called the base field and to study fields K containing
F . Rather than referring to F as a subfield of K, we speak of K as an extension of F , denoted K/F .

Example 1.1. For instance, C is an extension of R. If d 6= 0, 1 is a squarefree integer, then
Q(
√
d) = {a+ b

√
d : a, b ∈ Q} is an extension of Q. Also, R and C are extensions of Q.

There’s a big difference between extensions like Q(
√
d)/Q or C/R and those like R/Q or C/Q.

Definition 1.2. Let K/F be an extension.

• An element α ∈ K is called algebraic over F if it is a root of a polynomial over F , i.e. if
there’s a non-zero f(x) ∈ F [x] such that f(α) = 0. Otherwise, α is said to be transcendental
over F .

• The extension K/F is called algebraic if every element of K is algebraic over F . Otherwise,
the extension is called transcendental.

Let’s also introduce two bits of notation to differentiate between these two situations. Given a
commutative ring A, a subring R, and α ∈ A, let R[α] denote the smallest subring of A containing
both R and α (note that an arbitrary intersection of subrings of a ring is itself a subring). Given a
field extension K/F and an element α ∈ K, let F (α) denote the smallest subfield of K containing F
and α (again, note that an arbitrary intersection of subfields is a subfield). More generally, if F ≤ K
and S ⊂ K, then F (S) is the smallest subfield of K containing F and S (similarly, for R ≤ A and
R[S]).

Proposition 1.3. Let K/F be a field extension and α ∈ K. Then,

(i) α is transcendental if and only if F [α] ∼= F [x] (the polynomial ring over F );
(ii) α is algebraic if and only if F [α] = F (α), i.e. F [α] is a field; in which case, F (α) ∼=

F [x]/(fα(x)), where fα(x) ∈ F [x] is a monic irreducible polynomial.

The polynomial fα(x) is called the minimal polynomial of α (over F ).

Proof. In either case, consider the unique map ϕα : F [x] → K which is the identity on F and
sends x to α (the existence and uniqueness come from the universal property of polynomial rings).
As ϕα is a ring homomorphism, it sends a polynomial f(x) to f(α). The image of ϕα contains F
and α and it’s fairly easy to convince one’s self that it is the smallest such subring of K. Thus,
F [α] ∼= F [x]/ ker(ϕα). Now, α is algebraic if and only if ϕα has a non-trivial kernel. If this is the case,
the kernel is generated by a polynomial fα(x) of positive degree that we may simply choose to be monic
(since the non-zero constants are all units). If fα(x) = f(x)g(x) is a proper factorization of fα(x), then,
by the Chinese Remainder Theorem, F [x]/(fα(x)) ∼= F [x]/(f(x))×F [x]/(g(x)), where the right-hand
side is s product of non-zero rings. But such a product is never a field. Thus, fα(x) must be irreducible.
Since it is irreducible, and F [x] is a PID, the ideal (fα(x)) is maximal, so F [α] ∼= F [x]/(fα(x)) is a
field. �
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6 1. FIELDS AND GALOIS THEORY

Note that if α is transcendental over F , then F (α) is simply the fraction field of F [α] ∼= F [x];
as such it is isomorphic to the rational function field F (x). Note that every transcendental extension
K/F can be broken down into two extensions K/k/F , where k ∼= F ({xi : i ∈ I}) (i.e. a rational
function field in some number of variables)—a so-called a purely transcendental extension—and where
K/k is algebraic. We’ll now focus on algebraic extensions.

Part of the power of studying roots of polynomials by studying field extensions comes from the
following fundamental result due to Kronecker. Note first that any homomorphism from a field F to
another field K is necessarily injective and so we typically identify F with its image inside K and thus
consider any field K a given field F maps to as an extension K/F .

Theorem 1.4. Let F be a field and let f(x) ∈ F [x] be a non-constant polynomial. Then, there is
an extension of F in which f(x) has a root.

Proof. Let g(x) be an irreducible factor of f(x) and let K := F [x]/g(x). This is a field as g(x)
is irreducible. There is a natural map F → F [x]. Composing this with the quotient map F [x] → K
allows us to view K as an extension of F . Let α := x + (g(x)) be the congruence class of x. Then,
g(α) = g(x) + (g(x)) = 0, so that the class of x is itself a root of g(x), and hence of f(x), in K. �

The field K in the above proof is said to be obtained from F by adjoining a root of f(x). Often,
one might say: let f(x) be a (non-constant) polynomial over F , let α be a root of f(x) (which we know
exists in some extension of F ), and let K := F (α). Note that if f(x) is irreducible, then for any root
α of f(x), the fields F (α) are all isomorphic (to F [x]/(f(x))).

Example 1.5. Let K = Q( 3
√

2) be the field obtained by adjoining the real cube root of 2 to Q.

On the other hand, let K ′ = Q(ω 3
√

2), where ω = e2πi/3 is a primitive cube root of unity. Then, K and

K ′ are distinct fields inside of C, but they are isomorphic as abstract fields because 3
√

2 and ω 3
√

2 are
both roots of the irreducible polynomial x3 − 2 ∈ Q[x]. On the other hand, if K is the field obtained
by adjoining a root of f(x) = x3 − x2 − 2x+ 1 to Q, then K, viewed as a subfield of C say, contains
all three roots of f(x), the abstract isomorphisms between the fields obtained by adjoining each of
the roots of f(x) then become automorphisms of K. The extension K/Q is an example of a Galois

extension: it has three automorphisms, which is the same as the degree of f(x) (whereas Q( 3
√

2) only
has the identity automorphism).

One can study the structure of the roots of a polynomial f(x) ∈ F [x] by studying field extensions
of F obtained by adjoining roots of f(x). The culmination of this is Galois theory.

A basic invariant of a field extension is its degree. If K/F is a field extension, then K is an
F -algebra and so, in particular, an F -vector space.

Definition 1.6. The degree of K/F is defined to be the dimension of K as an F -vector space and
is denoted [K : F ]. The extension is called finite if the degree is finite, and infinite otherwise.

Proposition 1.7. Let F be a field, let f(x) ∈ F [x] be irreducible and non-constant, and let α be
a root of f(x). Then, [F (α) : F ] = deg f(x).

Proof. Recall that we may identify F (α) with F [x]/(f(x)), and thus identify α with x := x +
(f(x)). Let d := deg f(x). We claim that {1, x, x2, . . . , xd−1} is a basis of F [x]/(f(x)) as an F -vector
space. �

Example 1.8. The extensions Q(
√
d)/Q and C/R have degree two. The extensions R/Q and

C/Q are infinite; for instance, they both contain the extension Q(π)/Q and Q(π) contains Q[π] ∼=
Q[x], which is an infinite-dimensional Q-vector space). More generally, any transcendental extension
is infinite.

Proposition 1.9. Every finite extension is algebraic.

Proof. Let K/F have degree d <∞ and let α ∈ K. The set {1, α, α2, . . . , αd} has > d elements
and so must be linearly dependent. Thus, there are elements a0, a1, . . . , ad ∈ F such that

a0 · 1 + a1α+ a2α
2 + · · ·+ adα

d = 0.
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Thus, α is a root of a0 + a1x+ · · ·+ adx
d ∈ F [x]. �

There are however infinite algebraic extensions. For instance, we’ll see that the set of complex
numbers that are algebraic over Q form a field, and that this field has infinite degree (but is algebraic
by definition).

Definition 1.10. An extension K/F is called finitely generated if there is a finite subset S ⊆ K
such that K = F (S).

Example 1.11. The field Q(i,
√

2) is a finitely generated algebraic extension of Q. The field
of rational functions Q(x1, · · · , xn) in finitely many variables is a finitely generated transcendental
extension of Q.

Proposition 1.12. A finite extension is finitely generated.

Proof. A finite extension K/F has a finite basis. This finite basis is a fortiori a finite generation
set. �

We often denote a field extension K/F by the diagram

K

F

thinking of K as being ‘over’ F . A diagram of the form

Kn

...

K1

K0

will then denote what is called a tower of fields, also denote Kn/ · · · /K1/K0, where Ki is an extension
of Ki−1. The degree of an extension is multiplicative in towers.

Proposition 1.13. If

Kn

...

K1

K0

is a tower of fields, then

[Kn : K0] =

n∏
i=1

[Ki : Ki−1].
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Proof. By induction, we only need to consider the case n = 2, i.e. suppose K/k/F is a tower of
fields, we’ll show that [K : F ] = [K : k] · [k : F ]. Let {αi : i ∈ I} be a basis for k/F and let {βj : j ∈ J}
be a basis for K/k. We claim that {αiβj : i ∈ I, j ∈ J} is a basis for K/F . First, let’s show this is a
spanning set. Let z ∈ K, then there are elements aj ∈ k (almost all 0) such that

z =
∑
j∈J

ajβj .

Each (non-zero) aj in turn can be written as

aj =
∑
i∈I

bijαi,

with only finitely many bij ∈ F non-zero. Combing these, we obtain

z =
∑
i∈I

∑
j∈J

bijαiβj .

Now, let’s show linear independence. Suppose

∑
i∈I

∑
j∈J

cijαiβj = 0

with cij ∈ F , almost all 0. As {βj : j ∈ J} is linear independent, it must be that for all j ∈ J

∑
i∈I

cijαi = 0.

The linear independence of {αi : i ∈ I} then forces all cij to be zero. �

One way to obtain a tower of fields is to begin with an extension K/F , take two elements α, β ∈ K,
and form the tower

F (α)(β)

F (α)

F.

Note that F (α)(β) = F (α, β) = F (β)(α).

Proposition 1.14. A field extension K/F is finite if and only if it is both algebraic and finitely
generated.
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Proof. The left-to-right implication follows from previous results. Suppose K = F (α1, . . . , αn)
is algebraic and consider the tower

F (α1, . . . , αn) = F (α1, . . . , αn−1)(αn)

...

F (α1, α2) = F (α1)(α2)

F (α1)

F

Since each step in the tower is generated by one algebraic element, each successive extension is finite
(of degree that of the minimal polynomial of αi). The degree of K/F is then the product of these
finite degrees and hence is finite. �

Proposition 1.15. If K = F ({αi : i ∈ I}), then K/F is algebraic if and only if each αi is
algebraic over F .

Proof. The left-to-right implication holds by definition. Conversely, suppose β ∈ K. An element
of F ({αi : i ∈ I}) can, by definition, be written as

β =
f(αi1 , . . . , αin)

g(αi1 , . . . , αin)
,

where f, g ∈ F [x]. But then β ∈ F (αi1 , . . . , αin), which is finite, so β is algebraic. �

We think of F (α, β) as being formed out of F (α) and F (β). This leads to the following definition.

Definition 1.16. Suppose K and L are two extensions of F contained in a given larger extension
E (we cannot do this without this condition), the compositum of K and L, denoted KL, is the smallest
extension F inside E containing both K and L. We similarly define the compositum of any family
{Ki : i ∈ I} of subfields of a given extension E/F .

The diagram for a compositum is

KL

{{
{{
{{
{{

CC
CC

CC
CC

K

CC
CC

CC
CC

L

{{
{{
{{
{{

F

where K and L are tacitly assumed to be contained in a common larger extension.

Definition 1.17. Following Lang, we call a collection C of field extensions distinguished if the
following two conditions hold:
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(i) Let

K

k

F

be a tower of fields. Then, K/F ∈ C if and only if K/k and k/F are both in C.
(ii) If L/F ∈ C and K is any extension of F , then KL/K ∈ C:

KL

C

{{
{{
{{
{{

K

L

C{{
{{
{{
{{

F

In (ii), we think of the extension L/F being lifted to KL/K. Note that if C is a distinguished class
of extensions and K/F and L/F are in C, then KL/F is also in C.

The notion of distinguished class will occur a few times and it’s good to know when certain types
of extensions are distinguished, which is why I think it’s worth following Lang and naming the concept.

Proposition 1.18. The class of algebraic extensions is distinguished. So is the class of finite
extensions.

Proof. For finite extensions, the multiplicativity of degrees in towers proves condition (i). Now,
suppose L/F is finite and let K/F be arbitrary. By above, L/F is finitely generated by algebraic
elements α1, . . . , αn, i.e. L = F (α1, . . . , αn). Then, KL/K is also finitely generated by those elements,
i.e. KL = K(α1, . . . , αn). Thus, KL/K is also finite.

Now, consider algebraic extensions. For (i), if K/k/F is a tower of extensions and K/F is algebraic,
then automatically so are K/k and k/F . Conversely, let α ∈ K. As K/k is algebraic, there are
a0, . . . , ad ∈ k, not all 0, such that a0 + a1α+ · · ·+ adα

d = 0. Let k′ := F (a0, a1, . . . , an). Then, α is
algebraic over k′, but also k′ is finite over F (as it is finitely generated by algebraic elements). Then,

k′(α)

k′ = F (a0, . . . , ad)

F

is a tower of finite extensions and hence k′(α)/F is finite and so algebraic. Thus, α is algebraic over
F . For (ii), suppose L/F is algebraic, let K/F be any extension with K and L both contained in
a bigger extension E. Since L/F is algebraic, L = F ({αi : i ∈ I}) for some elements αi. Then,
KL = K({αi : i ∈ I}). Since the αi are algebraic over F , they are a fortiori algebraic over K. Thus,
KL/K is algebraic. �

We now set out to understand more about field extensions and the maps between them. Amongst
other things, this will allow us to see the structure of roots of polynomials appearing in these maps.



2. ALGEBRAICALLY CLOSED FIELDS AND ALGEBRAIC CLOSURE 11

First, recall from above that every homomorphism between two fields is an embedding (i.e. injec-
tive). With a fixed base field F and two extensions K1/F and K2/F , we’ll be interested in F -algebra
embeddings, i.e. homomorphisms that are the identity on F . A bit more generally, we’ll be interested
in a situation where we have two isomorphic base fields σ : F

∼−→ Fσ (here we use the notation Fσ

instead of σ(F ), and for a ∈ F , we’ll also use aσ for σ(a) ∈ σ(F ); we call aσ the conjugate of a under
σ) and, for extensions K1/F and K2/F

σ, embeddings τ : K1 → K2 such that τ |F = σ. This extra level
of generality is useful as some basic constructions, such as that in Kronecker’s result above, involve
constructing a field up to isomorphism.

Definition 1.19. Let σ : F → L be an embedding of fields and let K be an extension of F . We
say an embedding τ : K → L extends σ if τ |F = σ. We will also say that τ is an embedding over σ.
Note that F is isomorphic to its image Fσ in L. When σ is the identity map on F , we’ll simply say τ
is an embedding over F (or an F -embedding).

The source of the connection between field embeddings and roots of polynomials is the following
simple lemma.

Lemma 1.20 (“Embeddings bring roots of a polynomial to roots of that polynomial”). Let σ : F →
L be an embedding of fields and let f(x) = anx

n + · · ·+ a0 ∈ F [x]. Define fσ(x) = aσnx
n + · · ·+ aσ0 ∈

Fσ[x]. If K/F is an extension and τ : K → L extends σ, then for every root α of f(x) in K, we have
that τ(α) is a root of fσ(x). In particular, when σ is the identity, τ(α) is again a root of f(x).

Proof. By definition,

0 = f(α) =

n∑
i=0

aiα
i,

so that

0 = τ(0) = τ(f(α)) =

n∑
i=0

τ(ai)τ(α)i =

n∑
i=0

σ(ai)τ(α)i = fσ(τ(α)).

�

A useful corollary.

Corollary 1.21. If K/F is algebraic and τ : K → K is an F -embedding, then τ is an automor-
phism of K.

Proof. Note that the case where K/F is finite is immediate since τ is an injective linear trans-
formation from a finite-dimensional F -vector space to one of the same dimension and the rank+nullity
theorem ensures that injective implies surjective. The previous lemma basically allows us to reduce
to the finite-dimensional case. Let α ∈ K be arbitrary. We want to show that α is in the image of
τ so that τ is surjective. Since K/F is algebraic, there is a non-zero polynomial f(x) ∈ F such that
f(α) = 0. Let K ′ be the subfield of K obtained by adjoining all the roots of f(x) in K to F . Then,
K ′ is algebraic and finitely-generated, hence K ′/F is finite. By the previous lemma, τ |K′ maps K ′

into itself and we conclude that τ |K′ is an automorphism of K ′ by the finite case. Since α ∈ K ′, it is
in the image of τ |K′ and hence of τ itself. �

2. Algebraically closed fields and algebraic closure

Wouldn’t it be great if there were fields that contained all the roots of all polynomials over itself?
Wouldn’t it be great if you could embed any field into an unique such field (with some additional
property)? Yes and yes. And life is great!

Definition 2.1. A field Ω is called algebraically closed if every non-constant polynomial in Ω[x]
has a root in Ω (and so every polynomial in Ω[x] has all its roots in Ω by induction).

Note that the only algebraic extension of an algebraically closed field is itself; hence the name.
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Example 2.2. Possibly the only example you know is the complex numbers: the Fundamental
Theorem of Algebra, first proved by Gauss, is simply the statement that C is algebraically closed. The
standard proof is via complex analysis, but several others, including algebraic ones, exist. We’ll see
that the set of complex numbers that are algebraic over Q forms an algebraically closed field called
the field of algebraic numbers.

Definition 2.3. Let F be a field. An algebraic closure of F is an algebraically closed field that is
an algebraic extension of F .

The reason this is called a ‘closure’ is that it is a minimal algebraically closed field containing F .
Indeed, from property (i) of algebraic extensions being a distinguished class, an algebraic extension of
an algebraic extension is algebraic, and since algebraically closed fields can’t have non-trivial extensions,
once you hit an algebraically closed field, any nontrivial extension of it is no longer algebraic over F .
Of course, this also means an algebraic closure is a maximal algebraic extension.

Our goal now is to show that every field has an algebraic closure and that any two algebraic
closures are isomorphic over the base field. That algebraic closures are maximal algebraic extensions
suggests that perhaps we should break the problem into two parts: first, show every field has some
algebraically closed extension field, then show that the union of all algebraic extensions of the base
field within this big algebraically closed field is itself algebraically closed.

We present Emil Artin’s proof of the first part. (Let’s note at this point that above we only proved
that for any f(x) ∈ F [x], F can be embedded into a field K that contains a root of f(x); in fact, Lang’s
Proposition V.2.3 is a silly little thing that allows you to actually have F be a subset of K, so that K
is veritably an extension of F . So, any time we construct an embedding of F into a field K so that
some polynomial over F has a root in K, we can shimmy things so that K is actually an extension of
F .)

Theorem 2.4. Every field F has an extension Ω that is algebraically closed.

Proof. (E. Artin) This is just a bit absurd. For every non-constant f ∈ F [x], let xf be an
indeterminate and consider the polynomial ring R1 := F [{xf : f ∈ F [x], f non-constant}]. Let I1ER1

be the ideal generated by f(xf ) as f varies over all non-constant elements of F [x]. We’ll show that
I1 is not the unit ideal and hence is contained in some maximal ideal m1 ER1. Then F1 := R1/m1 is
a field that contains (an isomorphic copy of) F and a root of every non-constant polynomial over F .
Iterating this construction with F1 gives a field F2 that is an extension of F1 that contains a root of
every non-constant polynomial over F1. We then obtain a tower of extensions

...

F2

F1

F

such that Fn contains a root of every polynomial in Fn−1. It is straightforward to check that the
union Ω :=

⋃
n≥1 Fn is itself a field. Furthermore, we claim that Ω is algebraically closed. Indeed, a

polynomial g(x) ∈ Ω[x] has finitely many non-zero coefficients and is thus contained in Fn[x] for some
n. It then has a root in Fn+1 and hence in Ω.

If you’re keeping score, you’ll remember that we still have to show I1 is a proper ideal. If (f(xf ) :
f ∈ F [x],deg(f) ≥ 1) is the unit ideal, then there are polynomials g1, . . . , gn ∈ R1 such that

1 = g1f1(xf1) + g1f2(xf2) + · · ·+ gnfn(xfn)
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for some non-constant fi ∈ F [x]. Since the gi are polynomials, they only contain finitely many terms
and so are polynomials in xf1 , . . . , xfn and finitely many other xf . Let F ′ be an extension of F in
which each fi has a root and call that root αi. Plugging in αi for xfi and zero for the other xf into
the above identity yields 1 = 0 in F ′. Contradiction! �

Corollary 2.5. Every field has an algebraic closure.

Proof. Let F be a field and let Ω be an algebraically closed extension of F . Let F be the union
of all algebraic extensions of F in Ω. We claim that this is an algebraic closure of F . First off, it
is a field basically because algebraic extensions are a distinguished class. Indeed, given two algebraic
extensions of F in Ω, their compositum in Ω is algebraic over F , so when you, for instance, take two
elements in F and try to add them, each of them is in some algebraic extension and their addition can
take place in the compositum of the two extensions. (Said another way, when you take the direct limit
of a bunch of algebraic extensions in a given extension, you get another algebraic extension). Secondly,
F is algebraic over F . Indeed, any α in F is contained in some algebraic extension of F by definition
of F as the union of all algebraic extensions of F in Ω. Finally, F is algebraically closed. Indeed, let
g(x) ∈ F [x]. Since Ω is algebraically closed, g(x) has a root α in Ω. This α is algebraic over F and so
by property (i) of algebraic extensions being distinguished, α is algebraic over F and hence is a root
of g(x) in F . �

We will obtain the uniqueness as a corollary of some very important facts about extending em-
beddings.

Theorem 2.6. Let σ : F → Ω be an embedding of a field into an algebraically closed field, let
α ∈ Ω be algebraic over F , and let K = F (α). Let fα(x) ∈ F [x] be the minimal polynomial of α
over F . The number of extensions of σ to K is equal to the number of distinct roots of fα(x) (in any
algebraically closed field containing F ), and hence is ≤ [K : F ].

Proof. We know from above that if τ : K → Ω extends σ, then τ(α) must be a root of fσα (x)
showing that the number of τ is at most the number of distinct roots of fα(x). On the other hand,
given a root β of fσ in Ω, there is a unique homomorphism F [x] → Ω that agrees with σ on F and
sends x to β (this is the freeness property of the polynomial algebra composed with the isomorphism
F [x] ∼= Fσ[x]). Since K = F (α) ∼= F [x]/(fα(x)) ∼= Fσ[x](fσα (x)) and fσα (β) = 0 (i.e. the kernel
of the map F [x] → Ω is contained in (fα(x))), the universal property of quotients yields a unique
homomorphism K → Ω agreeing with σ on F and sending α to β. �

Example 2.7. In case you’re wondering about the word distinct in the above proposition, consider
the field F = Fp(T ), where Fp is the finite field Z/pZ for some prime p and T is a polynomial variable.
The polynomial f(x) = xp − T is irreducible over F (F is the fraction field of Fp[T ], which is a UFD,

and T is a prime element, so f(x) is irreducible by the Eisenstein criterion). Let T 1/p denote a root
of this polynomial in some extension of F . In that extension, f(x) = (x− T 1/p)p. Hence, T 1/p is the
unique root of f(x) in any algebraically closed field containing F , despite the fact that f has degree
p > 1. This kind of reprehensible behaviour only occurs in fields of characteristic p and goes by the
dirty name ‘inseparability’. We’ll get to that soon enough.

The following theorem ramps up the existence statement in the previous theorem (and uses it in
the proof).

Theorem 2.8. Let σ : F → Ω be an embedding of a field into an algebraically closed field. Then
σ can be extended to any algebraic extension K of F . If K is algebraically closed and Ω is algebraic
over Fσ, then any such extension is an isomorphism.

Proof. Make Zorn’s Lemma-nade! Let X be the set of all pairs (k, τ) where F ≤ k ≤ K and
τ : k → Ω extends σ. Define a partial order on X by (k, τ) ≤ (k′, τ ′) if k ≤ k′ and τ ′|k = τ . Since (F, σ)
is in X, X is nonempty. Given a chain (k1, τ1) ≤ (k2, τ2) ≤ . . . of elements of X, let k :=

⋃
n≥1 kn

and let τ =
⋃
n≥1 τn. It is clear that (k, τ) is in X and is an upper bound for the chain. By Zorn’s
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Lemma, there is a maximal element (k̃, τ̃) in X. We claim that k̃ = K. If not, let α ∈ K \ k̃. The

previous theorem allows us to extend τ̃ to k̃(α) contradicting the maximality of (k̃, τ̃). Thus, σ can be
extended to K.

If K is algebraically closed, Ω is algebraic over Fσ, and τ : K → Ω is an extension of σ, then
Kτ is algebraically closed. Since Ω is algebraic over Fσ and Kτ ≤ Ω, Ω is algebraic over Kτ . Hence,
Ω = Kτ , as the latter is algebraically closed. �

Corollary 2.9. Any two algebraic closures of a field are isomorphic (over that field).

We therefore often refer to an algebraic closure of F as the algebraic closure of F , and denote it
F . Others use F a or F ac. Others still, will be careful to use an algebraic closure. If I recall correctly,
there’s a paper of Deligne where you can find the gem “Let C be an algebraic closure of R...” or
something to that effect.

Remark 2.10. Note that if K/F is algebraic, then K = F .

Remark 2.11. If F is an infinite field, then #F = #F : indeed, every element of F is a root
of some unique irreducible polynomial over F and each such polynomial corresponds to at most its
degree many elements of F . As a polynomial is a finite expression and each is counted with a finite
multiplicity (the number of distinct roots in F ), the cardinality of this multiset is the same as that of
F . Hence, the same holds for F .

On the other hand, an algebraically closed field cannot be finite (see right below this). The same
argument as above however shows that the algebraic closure of a finite field is countable.

Proposition 2.12. Finite fields cannot be algebraically closed.

Proof. Let F be a finite field and consider the polynomial function from F to itself sending a to
a2 − a. Since 0 and 1 are both sent to 0, this function is not injective. Since F is finite, it is thus not
surjective either. If α ∈ F is an element not in its image, then the polynomial x2 − x− α has no root
in F . �

3. Splitting fields and normal extensions

A key concept in the study of field extensions is that of splitting fields.

Definition 3.1. Let F be a field and let f(x) ∈ F [x] be a non-constant polynomial. A splitting
field of f(x) is an algebraic extension K/F such that f(x) splits into linear factors over K and K is
generated over F by the roots of f(x).

Example 3.2. The extension Q(
√
D)/Q is the splitting field of x2−D. The extension Q( 3

√
2)/Q

is not the splitting field of x3 − 2, rather Q( 3
√

2, ω)/Q is, where ω = e2πi/3.

Theorem 3.3. Let K be a splitting field of f(x) ∈ F [x]. If L is another splitting field of f(x),
then there is an F -isomorphism L ∼= K. Indeed, if F ≤ K ≤ F , then any F -embedding of L into F is
an F -isomorphism L ∼= K.

Proof. By definition,

f(x) = c

d∏
i=1

(x− αi)

in K[x]. Similarly, in L[x],

f(x) = c

d∏
i=1

(x− βi)

Let K be an algebraic closure of K, so that K = F . Given any F -embedding τ : L→ F ,

f(x) = fτ (x) = c

d∏
i=1

(x− βτi ).
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But f(x) has a unique factorization in F [x] ⊇ K[x], so {βτ1 , . . . , βτn} is a permutation of {α1, . . . , αn}.
As K = F (α1, . . . , αn) and L = F (β1, . . . , βn), we thus see that Lτ ⊆ K. But also K = F (βτ1 , . . . , β

τ
n),

so Lτ = K. Furthermore, we know there is an extension τ : L→ F of the identity embedding F → F
since L/F is algebraic. �

More generally, given a family {fi ∈ F [x] : i ∈ I} of polynomials, we can define its splitting field
to be an extension K of F such that every fi factors into linear factors in over K and K is generated
by the roots of the fi.

Corollary 3.4. Splitting fields exist and are unique up to F -isomorphism.

Proof. For a single polynomial, its splitting field can simply be taken to be the subfield of F
generated by its roots in F . For a family of polynomials, you can do the same thing, or simply say
you’re taking the compositum of the splitting fields of each polynomial. This shows the existence of
splitting fields. We proved the uniqueness above for a single polynomial. Now, let K and L be two
splitting fields of the family {fi : i ∈ I} and let τ : L → K = F be an F -embedding (which we know
exists). For each i ∈ I, K and L each contain a unique splitting field Ki (and Li, resp.) of fi. By
above, Lτi = Ki. Thus, Lτ ≤ K. Since K is the compositum of the Ki, in fact, Lτ = K. �

The following characterization of splitting fields is what makes them so important.

Theorem/Definition 3.5. Let F be a field and let K/F be an extension contained in F . The
following are equivalent:

(i) K is the splitting field of a family of polynomials over F ;
(ii) every irreducible polynomial over F that has a root in K splits into linear factors in K;

(iii) every F -embedding K → F is an F -automorphism of K.

Any extension K/F satisfying one (and hence all) of these conditions is called normal.

Proof. (i)⇒(iii): Suppose τ : K → F is an F -embedding. We want to show that Kτ = K. From
an earlier result, it suffices to show Kτ ⊆ K. But since K is a splitting field, it is generated by roots
of some fi. Any root of fi must be sent to another by τ , and so its image must still lie in K.

(iii)⇒(i): We claim that K is the splitting field of {fα(x) : α ∈ K} (where fα(x) denotes the
minimal polynomial of α over F ). Let β ∈ F be a root of fα. We wish to show that β ∈ K. Define
σ : F (α)→ F (β) by the identity of F and by sending α to β. As K is algebraic over F (α), there is a
τ : K → F extending σ. This τ is an automorphism of K by assumption. Thus, τ(α) = σ(α) = β ∈ K.

(iii)⇒(ii): The preceding argument shows this.
(ii)⇒(iii): Let τ : K → F be an F -embedding. For any α ∈ K, τ maps α to some other root of

fα(x) and by assumption this root is in K. Thus, Kτ ⊆ K. But, again, an F -embedding of a field
into itself is an automorphism. �

Remark 3.6. The third equivalent condition is a useful theoretical characterization of normal
extension, as we’ll see in proofs below.

Example 3.7.

(i) Any quadratic extension is normal.

(ii) The extension Q( 3
√

2)/Q is not normal. Indeed, the roots ω 3
√

2 and ω2 3
√

2 of x3 − 2 are not

in Q( 3
√

2).

(iii) For any n ≥ 3, Q( n
√

2)/Q is not normal. Indeed, the root ζn
n
√

2 of xn − 2 is not in Q( n
√

2),
where ζn = e2πi/n.

(iv) For any n, Q(ζn)/Q is normal, as the other roots of fζn(x) are merely ζjn, where (j, n) = 1.

Proposition 3.8. Normal extensions do not form a distinguished class. However, condition (ii)
holds (i.e. a lift of a normal extension is normal). Furthermore, part of (i) holds: if K/k/F is a tower
of fields and K/F is normal, then K/k is normal. Also, the compositum, and also the intersection, of
fields gives normal extensions.
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Proof. To show that condition (i) of the definition of distinguished classes fails simply consider
the tower

Q( 4
√

2)

Q(
√

2)

Q

of successive degree two extensions. Each successive extension is normal, but the big extension is not.
By considering the tower

Q( 3
√

2, ω)

Q( 3
√

2)

Q

you can also get a situation where the big extension is normal, and the top extension is normal, but
the bottom one is not.

For the partial result regarding condition (i), suppose K/k/F is a tower of fields and that K/F is
normal. Let τ : K → k be a k-embedding. It is a fortiori an F -embedding and hence an automorphism
of K.

To prove condition (ii), suppose we have the diagram

KL

{{
{{
{{
{{

K

L

normal{{
{{
{{
{{

F

of field extensions where L/F is normal. Let τ be an K-embedding of KL into K. By definition,
Kτ = K, and by hypothesis, Lτ = L (since τ |L is an F -embedding). Thus, (KL)τ = KτLτ = KL.

Now, suppose K and L are normal over F , then for any F -embedding τ of KL into F , we have

(KL)τ = KτLτ = KL,

so KL is normal over F . For intersections, the proof is the same since τ(K ∩ L) = τ(K) ∩ τ(L). This
works for arbitrary families of fields. �

Since the intersection of normal extensions (contained in some bigger field) is a normal extension,
we can define the normal closure of a field. The idea being that a non-normal field is missing some
elements.
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Definition 3.9. Let K/F be an algebraic extension. The normal closure of K is

Knc :=
⋂

L/F normal

K≤L≤K

L,

i.e. it’s the minimal normal extension of F containing K.

Here is a more explicit description of the normal closure.

Proposition 3.10. For an algebraic extension K/F , let {τi : i ∈ I} be the set of F -embeddings
of K into K. Then, Knc is the compositum of the Kτi .

Proof. Given α ∈ K, any normal L/F containing K must contain ατi for all i ∈ I. Thus,
Knc contains Kτi for all i ∈ I and so it contains their compositum. Furthermore, if τ is some F -
embedding of this compositum into K, then composing τ with the τi simply permutes them, so τ is an
automorphism of the compositum. The latter is thus normal and hence the smallest normal extension
of F containing K. �

Note that this shows that the normal closure of a finite extension is itself finite (being a finite
compositum of finite extensions).

Example 3.11. Let K = Q( 3
√

2). We’ve seen that K/Q is not normal. There are three embeddings

of K into C (and hence into Q) sending 3
√

2 to 3
√

2, ω 3
√

2, or ω2 3
√

2. Thus, Knc = Q( 3
√

2, ω 3
√

2, ω2 3
√

2).

The latter is simply Q( 3
√

2, ω): indeed, ω ∈ Knc (since ω = ω 3
√

2/ 3
√

2) so Q( 3
√

2, ω) ≤ K; conversely,
3
√

2, ω 3
√

2, and ω2 3
√

2 are clearly all in Q( 3
√

2, ω). Similarly, Q( 4
√

2)nc = Q( 4
√

2, i).

4. Separable polynomials and separable extensions

Recall that above we saw that, for a finite extension F (α)/F , the number of F -embeddings of
F (α) into F is bounded above by the number of distinct roots of fα(x). To say that F (α) is normal is
to say that the number of such F -embeddings is equal to the number of distinct roots of the minimal
polynomial fα(x), i.e. that this number is as big as possible. We now go on to making the number really
as big as possible by identifying extensions where all the roots of minimal polynomials are distinct.

Let K/F be an algebraic extension and fix an embedding σ : F → Ω into an algebraically closed
field. Let ΣK,σ be the set of extensions of σ to K. It can be verified that #ΣK,σ is independent of σ
and Ω.

Definition 4.1. For an algebraic extension K/F , its separable degree is [K : F ]s := #ΣK,σ.

Proposition 4.2. The separable degree is multiplicative in towers: [K : F ]s = [K : k]s[k : F ]s. If
K/F is finite, [K : F ]s ≤ [K : F ].

Proof. The first statement basically follows from independence of σ. For the second statement,
view K/F is a tower F ≤ F (α1) ≤ F (α1, α2) ≤ · · · ≤ F (α1, . . . , αn) = K. From an earlier result, the
inequality holds at each step of the tower. It then holds over the whole tower by multiplicativity. �

Remark 4.3. In fact, for K/F finite, [K : F ]s | [K : F ]. The quotient is called the inseparable
degree [K : F ]i.

Definition 4.4. A polynomial f(x) ∈ F [x] is called separable if it has no multiple roots (in F ).
Let K/F be an extension and let α ∈ K be algebraic over F . We say α is separable over F if its
minimal polynomial fα(x) is separable.

Note that if α ∈ K is separable over F , then it is separable over any field k between K and F
since its minimal polynomial over k divides that over F .

Theorem/Definition 4.5. Let K/F be a finite extension. The following are equivalent:

(i) every element of K is separable over F ;
(ii) [K : F ]s = [K : F ].
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If K/F satisfies either (and hence both) of these conditions, we say K/F is separable. More generally,
an infinite algebraic extension K/F is called separable if every element of K is separable over F ,
equivalently, if every finite subextension k/F is separable.

Proof. �

Theorem 4.6. Separable extensions form a distinguished class.

Proof. �

Definition 4.7. An algebraic extension K/F is called Galois if it is both normal and separable.
The group of F -automorphisms of K is called the Galois group of K/F and denoted Gal(K/F ).

From what we’ve seen, this implies that there are as many F -automorphisms of K as possible; in
particular, for a finite extension of degree n, there are exactly n of them.
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