Assignment 2 – Part 1 – Math 612

- (1) Suppose C is a category with a zero object (so that one can define kernels and cokernels). Show that every kernel is a monomorphism and every cokernel is an epimorphism.
- (2) Prove the following statements given in class.
 - (a) Suppose C is an additive category and $f: A \to B$ is a morphism in C whose kernel exists. Show that f is monic if and only if its kernel is 0 (i.e. its kernel is the equivalence class of the zero morphism $0: 0 \to A$.
 - (b) Suppose C is an additive category and $g: B \to C$ is a morphism in C whose kernel exists. Show that g is epic if and only if its cokernel is 0 (i.e. its cokernel is the equivalence class of the zero morphism $0: C \to 0$.
 - (c) Show that, in an abelian category, kernels are monic and cokernels are epic.
 - (d) Show that if f is a morphism in an abelian category, then im(f) = ker(coker(f)).