Assignment 2 – All 2 parts – Math 612

Due in class: Thursday, Jan. 24, 2019

- (1) Suppose C is a category with a zero object (so that one can define kernels and cokernels). Show that every kernel is a monomorphism and every cokernel is an epimorphism.
- (2) Prove the following statements given in class.
 - (a) Suppose C is an additive category and $f: A \to B$ is a morphism in C whose kernel exists. Show that f is monic if and only if its kernel is 0 (i.e. its kernel is the equivalence class of the zero morphism $0: 0 \to A$.)
 - (b) Suppose C is an additive category and $g : B \to C$ is a morphism in C whose cokernel exists. Show that g is epic if and only if its cokernel is 0 (i.e. its cokernel is the equivalence class of the zero morphism $0 : C \to 0$.)
 - (c) Show that if f is a morphism in an abelian category, then im(f) = ker(coker(f)).
- (3) Let R and S be rings and let $\mathcal{F} : R$ -Mod $\rightarrow S$ -Mod be an exact additive covariant functor.
 - (a) Suppose $\varphi : A \to B$ is an *R*-module homomorphism. Show that $\mathcal{F}(\ker(\varphi)) \cong \ker(\mathcal{F}(\varphi))$, $\mathcal{F}(\operatorname{coker}(\varphi)) \cong \operatorname{coker}(\mathcal{F}(\varphi))$, and $\mathcal{F}(\operatorname{im}(\varphi)) \cong \operatorname{im}(\mathcal{F}(\varphi))$, i.e \mathcal{F} commutes with kernels, cokernels, and images.
 - (b) Show that \mathcal{F} induces a functor $\operatorname{Kom}(R) \to \operatorname{Kom}(S)$ (that we'll also denote by \mathcal{F}) given by $(\mathcal{F}(A^{\bullet}))^n = \mathcal{F}(A^n)$ with differential $(\mathcal{F}(d))^n = \mathcal{F}(d^n)$, and if φ is a morphism of complexes, then $\mathcal{F}(\varphi)_n = \mathcal{F}(\varphi_n)$. (\mathcal{F} need not be exact for this part, so do not use this property.)
 - (c) Show that \mathcal{F} commutes with homology, i.e. if $(A^{\bullet}, d^{\bullet})$ is any complex of R-modules, then $H^n(\mathcal{F}(A^{\bullet})) = \mathcal{F}(H^n(A^{\bullet}))$ for all $n \in \mathbb{Z}$.