Assignment 3 – All 2 parts – Math 612

Due in class: Thursday, Jan. 31, 2019

(1) $\operatorname{Ext}_{\mathbf{Z}}^{1}(\mathbf{Z}/m\mathbf{Z}, \mathbf{Z}/n\mathbf{Z})$. In this exercise, you'll compute the **Z**-module $\operatorname{Ext}_{\mathbf{Z}}^{1}(\mathbf{Z}/m\mathbf{Z}, \mathbf{Z}/n\mathbf{Z})$ for $m, n \in \mathbf{Z}_{\geq 2}$. Recall that I said we will define $\operatorname{Ext}_{\mathbf{Z}}^{1}(\mathbf{Z}/m\mathbf{Z}, -)$ as the first right derived functor of $\operatorname{Hom}_{\mathbf{Z}}(\mathbf{Z}/m\mathbf{Z}, -)$ and hence it can be computed by taking an injective resolution of $\mathbf{Z}/n\mathbf{Z}$.

(a) Show that

$$0 \longrightarrow \mathbf{Z}/n\mathbf{Z} \longrightarrow \mathbf{Q}/\mathbf{Z} \xrightarrow{d^0} \mathbf{Q}/\mathbf{Z} \xrightarrow{d^1} 0$$
$$1 \longmapsto \frac{1}{n} + \mathbf{Z}$$
$$a + \mathbf{Z} \longmapsto na + \mathbf{Z}$$

is an injective resolution of $\mathbf{Z}/n\mathbf{Z}$.

- (b) Show that $\operatorname{Hom}_{\mathbf{Z}}(\mathbf{Z}/m\mathbf{Z}, \mathbf{Q}/\mathbf{Z}) \cong (\frac{1}{m}\mathbf{Z})/\mathbf{Z} \cong \mathbf{Z}/m\mathbf{Z}$.
- (c) Applying $\operatorname{Hom}_{\mathbf{Z}}(\mathbf{Z}/m\mathbf{Z}, -)$ to the complex

$$0 \longrightarrow \mathbf{Q}/\mathbf{Z} \longrightarrow \mathbf{Q}/\mathbf{Z} \longrightarrow 0$$

you get the complex

$$0 \longrightarrow \operatorname{Hom}_{\mathbf{Z}}(\mathbf{Z}/m\mathbf{Z}, \mathbf{Q}/\mathbf{Z}) \xrightarrow{d_*^0} \operatorname{Hom}_{\mathbf{Z}}(\mathbf{Z}/m\mathbf{Z}, \mathbf{Q}/\mathbf{Z}) \xrightarrow{d_*^1} 0.$$

Recall that $\operatorname{Ext}^{1}_{\mathbf{Z}}(\mathbf{Z}/m\mathbf{Z},\mathbf{Z}/n\mathbf{Z}) := \ker d^{1}_{*}/\operatorname{im} d^{0}_{*}$. Show that

$$\operatorname{Ext}^{1}_{\mathbf{Z}}(\mathbf{Z}/m\mathbf{Z},\mathbf{Z}/n\mathbf{Z}) \cong (\mathbf{Z}/m\mathbf{Z})/(n(\mathbf{Z}/m\mathbf{Z})) \cong \mathbf{Z}/\operatorname{gcd}(m,n)\mathbf{Z}.$$

(2) The snake lemma. In class, we considered the commutative diagram for R-modules

$$M_1 \xrightarrow{f} M_2 \xrightarrow{g} M_3 \longrightarrow 0$$

$$\downarrow^{d_1} \qquad \downarrow^{d_2} \qquad \downarrow^{d_3}$$

$$0 \longrightarrow N_1 \xrightarrow{f'} N_2 \xrightarrow{g'} N_3$$

with exact rows and said that we obtain an exact sequence

 $\ker d_1 \longrightarrow \ker d_2 \longrightarrow \ker d_3 \xrightarrow{\delta} \operatorname{coker} d_1 \longrightarrow \operatorname{coker} d_2 \longrightarrow \operatorname{coker} d_3.$

- (a) In class, we showed exactness at ker d_2 and ker d_3 . Show exactness at coker d_1 , and coker d_2 .
- (b) Show that if $M_1 \to M_2$ is injective, then so is $\ker d_1 \to \ker d_2$. Show that if $N_2 \to N_3$ is surjective, then so is coker $d_2 \to \operatorname{coker} d_3$.
- (3) The five lemma. Consider the commutative diagram of *R*-modules

whose rows are exact.

- (a) Suppose f_1 is surjective and f_2 and f_4 are injective. Show that f_3 is injective.
- (b) Suppose f_5 is injective and f_2 and f_4 are surjective. Show that f_3 is surjective.
- (c) This is a remark. These two parts combine to give the "five lemma": if f_1 is surjective, f_5 is injective, and f_2 and f_4 are isomorphisms, then f_3 is an isomorphism.