
Assignment 5 – Part 1 – Math 612

(1) Suppose

0 N E0 E1 · · ·e e0 e1

is an injective resolution of N . Show that for all p ≥ 1

Extp+nR (M,N) ∼= ExtpR(M, ker en).

(Hint: Dimension shifting.)

(2) Yoneda Ext. A concrete interpretation of Extn(M,N) was given by Yoneda as follows

(the case of n = 1 was already known). Let M and N be R-modules (or two objects

in an abelian category which need not have enough injectives). An extension of M by

N is a short exact sequence ξ

0→ N → X →M → 0

(one sometimes refers to X as an extension of M by N). More generally, for a positive

integer n, an n-fold extension of M by N (or a degree N extension of M by N) is an

exact sequence ξ

0 −→ N
fn+1−→ Xn

fn−→ · · · −→ X1
f1−→M −→ 0.

Let’s write this as

ξ : 0 −→ N −→ (X•, f•) −→M −→ 0.

Given another n-fold extension of M by N

χ : 0 −→ N −→ (Y•, g•) −→M −→ 0,

a morphism π : ξ → χ is a collection of maps πk : Xk → Yk making the following

diagram commute

0 N Xn · · · X1 M 0

0 N Yn · · · Y1 M 0.

fn+1

πn π1

f1

gn+1 g1

(a) Define a relation on the set of n-fold extensions of M by N as follows. Say ξ is
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equivalent to χ, written ξ ∼ χ if there’s yet another n-fold extension

ξ′ : 0 −→ N −→ (X ′•, f
′
•) −→M −→ 0.

and two morphisms π : ξ′ → ξ and ρ : ξ′ → χ. Show that this is an equivalence

relation. Hint: The tough part here is transitivity. Suppose you have yet another

extension ψ = (Z•, h•) and χ ∼ ψ via an extension χ′ = (Y ′• , g
′
•) with maps

π′ : χ′ → χ and ρ′ : χ′ → ψ, show that you can get that ξ ∼ ψ via an extension

(Z ′•, h
′
•) where Z ′k := X ′k ×Yk Y ′k , the fibre product of X ′k with Y ′k over Yk. Recall

that the fibre product in the category of R-modules is given by

X ′k ×Yk Y ′k = {(x, y) ∈ X ′k × Y ′k : ρk(x) = π′k(y)}

equipped with the natural coordinate projection maps ρ′′k : X ′k ×Yk Y ′k → X ′k and

π′′k : X ′k ×Yk Y ′k → Y ′k as illustrated in this commutative diagram:

X ′k ×Yk Y ′k

X ′k Y ′k

Yk

π′′kρ′′k

ρk π′k

(b) We will now denote the set of equivalences classes of n-fold extensions of M by N

by YExtnR(M,N). We will be able to drop the ‘Y’ from the notation eventually

because, in fact, there is a group law on this set given by the so-called Baer sum

and a natural isomorphism with the abelian group ExtnR(M,N). In this part,

you’ll prove a little bit about the group law. Suppose ξ and ξ′ are two n-fold

extensions of M by N . Define their Baer sum to be the extension

ξ ⊕ ξ′ : 0 −→ N −→ (X̃•, f̃•) −→M −→ 0,

where

X̃k :=


X1 ×M Y1 k = 1

Xn tN Yn k = n

Xk ⊕ Yk otherwise.

Here, XntN Yn denotes the fibre coproduct of Xn and Yn over N . Recall that the
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fibre coproduct in the category of R-modules lives in the diagram

Xn tN Yn

Xn Yn

N

f g

gn+1fn+1

and is given explicitly by

Xn tN Yn := (Xn ⊕ Yn)
/
{(fn+1(z),−gn+1(z)) : z ∈ N}.

Now, what needs to be shown is this is well-defined independently of the choice of

representatives of the equivalence classes, but I won’t make you do that because

it sounds terrible. Instead, just show that the sequence ξ ⊕ ξ′ is indeed an n-fold

extension of M by N (i.e. that the sequence is exact).

(c) Now, let’s define a map θ : YExtnR(M,N)→ ExtnR(M,N) that will be the desired

natural group isomorphism. First off, let

0 N E0 E1 · · ·e e0 e1

be an injective resolution of N . Since an extension ξ is an exact sequence, a

result proved in class says that there is a unique (up to homotopy) morphism

of complexes ϕ from ξ to 0 → N → E• with ϕ−1 = idN , i.e. a unique (up to

homotopy) collection of morphisms ϕk such that

0 N Xn · · · X1 M 0 · · ·

0 N E0 · · · En−1 En En+1 · · ·

fn+1

ϕ0

fn

ϕn−1

f1

ϕn ϕn+1

e e0 en−2 en−1 en en+1

First, show that imϕn ⊆ im en−1, so that ϕn induces a map βξ : M → im en−1.

Now, consider the short exact sequence

0→ ker en−1 → En−1 → im en−1 → 0

Apply HomR(M,−) to this sequence and use the long exact sequence and the
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result from Question (1) to show that you get a natural map

δξ : HomR(M, im en−1)→ ExtnR(M,N).

The map θ is then defined by setting θ(ξ) := δξ(βξ). Of course, you’d now have to

show this is a well-defined group isomorphism, but this question is already long

enough. Anyway, this definition of θ is a nice example of how one gets interesting

natural maps via connecting homomorphisms δ.

4


