MATH 699 : Algebraic Number Theory
Lecturer: Rob Harron
Spring 2015
Lectures: F 2:30pm–3:30pm or 4:00pm
Keller 402

Office Hours: Mon. 2:30pm–3:30pm & Wed. 2:30pm–3:30pm in my office (Keller 407)
Announcements:
Course material:

Lecture 1Introduction, motivation, Gaussian integers
(Neukirch §I.1)
Problem set 1
Lecture 2Integral extensions, rings of integers, example: quadratic fields
(Neukirch §I.2, Alaca–Williams Ch. 4, Atiyah–Macdonald Ch. 5)
Problem set 3
Lecture 3Discriminants, finding OK, example: pure cubic fields
(Neukirch §I.2, Alaca–Williams §7.1, Murty–Esmonde §4.3)
Problem set 4
Lecture 4Discriminant and ring of integers of cyclotomic fields, Dedekind domains
(Murty–Esmonde §4.5, Fröhlich–Taylor §II.1, Atiyah–Macdonald Ch. 9)
Problem set 2
Lecture 5Dedekind domains (cont'd), factorization in extensions
(Neukirch §I.8)
Problem set 5
Lecture 6Discriminants and differents of extensions, Dedekind's theorem on ramification
(Neukirch §III.2, Murty–Esmonde §5.4)
Problem set 6
Lecture 7Factorization in Galois extensions
(Neukirch §I.9)
Problem set 6
Lecture 8Factorization in cyclotomic fields, a proof of quadratic reciprocity
(Neukirch §I.10)
Problem set 7
Lecture 9 Geometry of numbers, application to finiteness theorems
(Neukirch §I.5, III.2, Alaca–Williams Ch. 12, Milne's ANT notes Ch. 4)
Problem set 8
Lecture 10 More finiteness theorems, finiteness of the class number
(Neukirch §I.6, III.2, Alaca–Williams Ch. 12, Milne's ANT notes Ch. 4)
Examples of computing
class groups
Lecture 11 Examples of computing class numbers
(Alaca–Williams §12.6)
Problem set 9
Lecture 12 Dirichlet's unit theorem, the regulator, and units in quadratic fields
(Alaca–Williams Ch. 11, Neukirch §I.7, Milne's ANT notes Ch. 5)
Problem set 10
Last modified: 28th of April, 2015