Problem set 1 – Math 699 – Algebraic number theory

- (1) (a) For $\alpha \in \mathbf{Z}[i]$, show that $N(\alpha) = 1$ if and only if $\alpha \in \mathbf{Z}[i]^{\times}$. Here $N(\alpha) = \alpha \overline{\alpha}$ is the norm of α .
 - (b) Show if that $p \equiv 3 \pmod{4}$, then p is prime in $\mathbb{Z}[i]$.
- (2) (a) Show that $\mathbf{Z}[\sqrt{-2}]$ is Euclidean. (Hint: use the norm function $N(a+b\sqrt{-2}) = |a+b\sqrt{-2}|^2 = a^2 + 2b^2$.)
 - (b) Show that $N(\alpha) = 1$ if and only if $\alpha \in \mathbb{Z}[\sqrt{-2}]^{\times}$. From this, determine $\mathbb{Z}[\sqrt{-2}]^{\times}$.
 - (c) Let p be a prime. Show that if $p = a^2 + 2b^2$, with $a, b \in \mathbb{Z}$, then p = 2 or $p \equiv 1$ or 3 (mod 8). Conclude that if p is odd and $p \equiv 5, 7 \pmod{8}$, then p is prime in $\mathbb{Z}[\sqrt{-2}]$.
 - (d) Let p be an odd prime. Using quadratic reciprocity (or really its so-called "supplements"), show that $p \equiv 1, 3 \pmod{8}$ if and only if -2 is a square mod p.
 - (e) Show that if $p \equiv 1, 3 \pmod{8}$, then p is not prime in $\mathbb{Z}[\sqrt{-2}]$.
 - (f) Prove Fermat's theorem that $p = a^2 + 2b^2$ with $a, b \in \mathbb{Z}$ if and only if p = 2 or $p \equiv 1, 3 \pmod{8}$.
- (3) Let ω be the primitive 3rd root of unity $e^{2\pi i/3}$, so a root of $x^2 + x + 1$.
 - (a) Show that $\mathbf{Z}[\omega]$ is Euclidean. (Hint: use the norm function $N(a + b\omega) = |a + b\omega|^2 = a^2 ab + b^2$.)
 - (b) Show that $N(\alpha) = 1$ if and only if $\alpha \in \mathbf{Z}[\omega]^{\times}$. From this, determine $\mathbf{Z}[\omega]^{\times}$.
 - (c) Let p be a prime. Show that if $p = a^2 ab + b^2$, with $a, b \in \mathbb{Z}$, then p = 3 or $p \equiv 1 \pmod{3}$. Conclude that if $p \equiv 2 \pmod{3}$, then p is prime in $\mathbb{Z}[\omega]$.
 - (d) Let $p \neq 3$. Using quadratic reciprocity, show that $p \equiv 1 \pmod{3}$ if and only if -3 is a square mod p.
 - (e) Show that if $p \equiv 1 \pmod{3}$, then p is not prime in $\mathbf{Z}[\omega]$.
 - (f) Prove that $p = a^2 ab + b^2$ with $a, b \in \mathbb{Z}$ if and only if p = 3 or $p \equiv 1 \pmod{3}$.
- (4) Why does the argument used in the lecture to show that $\mathbf{Z}[i]$ is Euclidean with respect to the norm function not work for $\mathbf{Z}[\sqrt{-3}]$?