Problem set 4 – Math 699 – Algebraic number theory

- (1) In class, we determined an integral basis for $K = \mathbf{Q}(m^{1/3})$ for $m \not\equiv \pm 1 \pmod{9}$ cubefree. In this exercise, you will determine an integral basis when $m \equiv \pm 1 \pmod{9}$. In class, we proceeded rather neatly, but this won't work so well here. Recall that we let $\alpha = m^{1/3}$ and $m = ab^2$, where ab is squarefree and (a, b) = 1. Throughout, $m \equiv \pm 1 \pmod{9}$.
 - (a) Let $\mu = r + s\alpha + t\alpha^2$ be an arbitrary element of K. Show that

$$\operatorname{tr}(\mu) = 3r$$

and

$$\mathcal{N}(\mu) = r^3 + s^3 m + t^3 m^2 - 3rstm.$$

- (b) Let $\nu = \frac{1 \pm \alpha + \alpha^2}{3}$. Show that $\nu \in \mathcal{O}_K$. (Hint: what is its minimal polynomial?)
- (c) Since $\nu \notin \mathbf{Z}[\alpha]$, conclude that $3 \mid \operatorname{ind}(\alpha)$. From class, this implies that $\operatorname{ind}(\alpha) = 3b$.
- (d) Conclude that $\nu, \alpha, \alpha^2/b$ is an integral basis of K. (Hint: what is the determinant of the change of basis matrix from this set to $1, \alpha, \alpha^2$?)
- (e) I like integral bases that have the number 1 in them. Show that $1, \nu, \alpha^2/b$ is an integral basis of K.
- (2) How much of the argument we used in class to determine the ring of integers for $\mathbf{Q}(m^{1/3})$ when $m \not\equiv \pm 1 \pmod{9}$ goes through with \mathbf{Q} adjoin a root of $x^n m$? What conditions on m make it simpler? What if n is prime? What if m is squarefree or cubefree rather than simply mth power free?¹
- (3) Let K and L be number fields with $K \subseteq L$. Show that $\mathcal{N}_{K/\mathbf{Q}} \circ \mathcal{N}_{L/K} = \mathcal{N}_{L/\mathbf{Q}}$ and $\operatorname{tr}_{K/\mathbf{Q}} \circ \operatorname{tr}_{L/K} = \operatorname{tr}_{L/\mathbf{Q}}$.
- (4) (a) Let α be an algebraic number and let f_{α} be its minimal polynomial, so that $\alpha_1 = \alpha, \alpha_2, \ldots, \alpha_n$ are its roots. Show that

$$\Delta(f_{\alpha}) = (-1)^{\binom{n}{2}} \prod_{i=1}^{n} f_{\alpha}'(\alpha_i).$$

¹Integral bases for pure quartic fields are given in Takeo Funakura, On integral bases of pure quartic fields, Mathematical Journal of Okayama University **57** (1984), no. 1, pp. 27–41.

- (b) Let α be an algebraic number and suppose $f_{\alpha}(x) = x^n + ax + b$. Show that $\Delta(f_{\alpha}) = (-1)^{\binom{n}{2}} (n^n b^{n-1} + a^n (1-n)^{n-1}).$
- (5) (Stickelberger's criterion) If K be a number field, then $\Delta(K) \equiv 0, 1 \pmod{4}$. Prove this. (Hint: Recall that if $A = (a_{ij})$ is an $n \times n$ matrix, then

$$\det(A) = \sum_{\tau \in S_n} \operatorname{sgn}(\tau) a_{1,\tau(1)} a_{2,\tau(2)} \cdots a_{n,\tau(n)}$$

For the matrix $A = (\sigma_i(\alpha_j))$ appearing in the definition of $\Delta(K)$, write A = E - Owhere E is the sum of even permutations and O is the sum over odd permutations (with the sgn(τ) factor removed). Now what?)

- (6) (Brill's theorem) It follows from the previous assignment that a number field K of degree n has n embeddings into C. These n embeddings consist of r₁ embeddings into R and r₂ pairs of complex conjugate embeddings into C that don't land inside R. The pair (r₁, r₂) is called the *signature* of K. Show that the sign of Δ(K) is (-1)^{r₂}. (Hint: Compare the matrix (σ_i(α_j)) (whose determinant-squared is the discriminant) to its complex conjugate).
- (7) Let K/\mathbf{Q} be a degree 4 extension with Galois group $V_4 = \mathbf{Z}/2\mathbf{Z} \times \mathbf{Z}/2\mathbf{Z}$.
 - (a) Draw the subgroup diagram for V_4 and the corresponding intermediate field diagram for K/\mathbf{Q} .
 - (b) Let $K_m = \mathbf{Q}(\sqrt{m})$, $K_n = \mathbf{Q}(\sqrt{n})$, and $K_r = \mathbf{Q}(\sqrt{r})$ (m, n, r, squarefree) denote the three quadratic intermediate extensions of K/\mathbf{Q} . Show that $K_r = \mathbf{Q}(\sqrt{mn})$ and that $r = m_1 n_1$, where $m_1 = m/g$, $n_1 = n/g$, where $g = \gcd(m, n)$.
 - (c) Since the congruence classes of $m, n, r \mod 4$ affect $\mathcal{O}_{K_m}, \mathcal{O}_{K_n}, \mathcal{O}_{K_r}$, they affect \mathcal{O}_K . In the rest of this exercise, you will determine \mathcal{O}_K when $(m, n) \equiv (2,3) \pmod{4}$.² Let $\alpha = a + b\sqrt{m} + c\sqrt{n} + d\sqrt{r}$ denote an arbitrary element of K. What are its conjugates? By taking its trace down to K_m, K_n , and K_r , show that if $\alpha \in \mathcal{O}_K$, then $2a, 2b, 2c, 2d \in \mathbb{Z}$.
 - (d) By taking the norm of $\alpha = \frac{1}{2}(a' + b'\sqrt{m} + c'\sqrt{n} + d'\sqrt{r}) \ (a', b', c', d' \in \mathbf{Z})$ down to K_n , show that $a' \equiv c' \equiv 0 \pmod{2}$ and $b' \equiv d' \pmod{2}$ in order for α to be in \mathcal{O}_K .
 - (e) Conversely, suppose $\alpha = \frac{1}{2}(a' + b'\sqrt{m} + c'\sqrt{n} + d'\sqrt{r}) \ (a', b', c', d' \in \mathbb{Z})$ with $a' \equiv c' \equiv 0 \pmod{2}$ and $b' \equiv d' \pmod{2}$. Show that $\alpha \in \mathcal{O}_K$. (Hint: compute the minimal polynomial of α over K_n .

²For the remaining cases see Kenneth Williams, *Integers of biquadratic fields*, Canadian Mathematical Bulletin **13** (1970), no. 4, pp. 519–526.

- (f) Conclude that $1, \sqrt{m}, \sqrt{n}, \frac{\sqrt{m} + \sqrt{r}}{2}$ is an integral basis of \mathcal{O}_K .
- (g) Compute the discriminant of K.