Problem set 6 – Math 699 – Algebraic number theory

- (1) Compute the different of the following number fields: $\mathbf{Q}(\sqrt{-d})$ (*d* squarefree) and $\mathbf{Q}(\zeta_{\ell})$ (ℓ prime).
- (2) (a) Let $K = \mathbf{Q}(\theta)$ and let p be a rational prime dividing the degree of K/\mathbf{Q} . Suppose the minimal polynomial of θ is Eisenstein at p, show that p is wildly ramified in K.
 - (b) Let *m* be cubefree. We know 3 is ramified in $K = \mathbf{Q}(m^{1/3})$. Show that 3 is wildly ramified in *K* if and only if $m \not\equiv \pm 1 \pmod{9}$, i.e. if and only if $\operatorname{ord}_3(\Delta(K)) > 1$.
 - (c) Show that no other primes can be wildly ramified in $\mathbf{Q}(m^{1/3})$.
 - (d) Find a cubic field in which 2 is wildly ramified. (I don't have a method for this.)
- (3) Let K/F be a Galois extension of number fields with Galois group G. We say that a prime \mathfrak{p} of F is *nonsplit* if there's only one prime \mathfrak{P} dividing \mathfrak{p} (i.e. g = 1).
 - (a) Show that if there is an unramified \mathfrak{p} of F which is nonsplit, then G is cyclic.
 - (b) Conclude that if G is non-cyclic, then there are only finitely many primes p of F that are nonsplit in K/F.
- (4) Let K/F be a Galois extension of number fields and let $G := \operatorname{Gal}(K/F)$. Fix an embedding $\iota_{\infty} : F \hookrightarrow \mathbf{C}$ and let $I_{\infty} := \{\iota : K \hookrightarrow \mathbf{C} : \iota|_F = \iota_{\infty}\}$. The group G acts on I_{∞} (on the right) by composition: $\iota^{\sigma} := \iota \circ \sigma$ for all $\iota \in I_{\infty}, \sigma \in G$.
 - (a) Show that this action is free and transitive (i.e. all stabilizers are trivial and there is only one orbit). Thus, $G \cong I_{\infty}$ as G-sets.
 - (b) An embedding $\iota \in I_{\infty}$ is called real (resp. *nonreal*) if its image is contained in **R** (resp. not contained in **R**). Show that since K/F is Galois, either all elements of I_{∞} are real or they are all nonreal. This is an analogue to what we saw in class about the factorization of prime ideals in Galois extensions.
 - (c) Find a non-Galois extension K/F of number fields where I_{∞} contains both real and nonreal embeddings.
- (5) Let K/F be a non-Galois extension of number fields of degree $n \ge 2$, let N/F be its Galois closure, and let $G := \operatorname{Gal}(N/F)$. Let $I := \{\iota : K \hookrightarrow N : \iota|_F = \operatorname{id}\} = \{\iota_1, \ldots, \iota_n\}$ with $\iota_1 \in I$ denoting the embedding given by the inclusion $K \subseteq N$. The group G acts on I (on the left) by composition: $\sigma \cdot \iota := \sigma \circ \iota$.

- (a) Show that G acts faithfully and transitively on I (i.e. the intersection of all stabilizers is trivial and there is only one orbit). This induces an embedding $\varphi: G \hookrightarrow S_n$.
- (b) Let S_{n-1} denote the subgroup of S_n acting as the permutations of $\{\iota_2, \iota_3, \ldots, \iota_n\}$ (i.e. the stabilizer in S_n of ι_1). Let H be the subgroup of G to which K/Fcorresponds under the Galois correspondence. Show that $H = \operatorname{Stab}_G(\iota_1) = G \cap \varphi^{-1}(S_{n-1})$. Thus, as G-sets, $I \cong H \setminus G$.
- (c) Let \mathfrak{p} be a prime of F, let $S_{\mathfrak{p}}(K)$ (resp. $S_{\mathfrak{p}}(N)$) denote the set of primes of K(resp. N) that divide \mathfrak{p} . For $\widetilde{\mathfrak{P}} \in S_{\mathfrak{p}}(N)$, let $G_{\widetilde{\mathfrak{P}}} \leq G$ and $I_{\widetilde{\mathfrak{P}}} \leq G_{\widetilde{\mathfrak{P}}}$ denote its decomposition group and its inertia subgroup, respectively. Then, $G_{\widetilde{\mathfrak{P}}}$ acts on $H \setminus G \cong I$ (on the right) by $(H\sigma)^g = H\sigma g$. Show that there is a bijection between (right) $G_{\widetilde{\mathfrak{P}}}$ -orbits of $H \setminus G$ and the set $S_{\mathfrak{p}}(K)$. (Hint: show that the map $H \setminus G/G_{\widetilde{\mathfrak{P}}} \to S_{\mathfrak{p}}(K)$ given by $H\sigma G_{\widetilde{\mathfrak{P}}} \mapsto \sigma \widetilde{\mathfrak{P}} \cap K$ is a well-defined bijection.)
- (d) Thus, if $g := \#S_{\mathfrak{p}}(K)$, then g equals the number of $G_{\widetilde{\mathfrak{P}}}$ -orbits of $H \setminus G$. For $\mathfrak{P} \in S_{\mathfrak{p}}(K)$, let \mathfrak{O} denote the corresponding $G_{\widetilde{\mathfrak{P}}}$ -orbit of $H \setminus G$. Show that $e(\mathfrak{P})$ is the size of the $I_{\widetilde{\mathfrak{P}}}$ -orbit of an(y) element of \mathfrak{O} . Show that $e(\mathfrak{P})f(\mathfrak{P}) = \#\mathfrak{O}$.
- (e) Show that \mathfrak{p} in F is ramified in K if and only if it is ramified in N.
- (6) Let K/F be a degree *n* Galois extension of number fields whose Galois group is a non-abelian simple group (such as A_5 or $GL_3(\mathbf{F}_2)$). Let \mathfrak{p} be a prime of *F*.
 - (a) Can \mathfrak{p} have factorization type $(2^{n/2})$? What types of the form (f^e) are possible?
 - (b) Can \mathfrak{p} factor as $(\mathfrak{P}_1\mathfrak{P}_2)^e$?
 - (c) If $\operatorname{Gal}(K/F) = A_5$ and there is a prime \mathfrak{P} of K dividing \mathfrak{p} whose inertial degree is ≥ 6 , show that \mathfrak{p} is ramified in K/F.