
Problem set 7 – Math 699 – Algebraic number theory

(1) Let L/K/F be a tower of extensions of number fields. Let p be a prime of F , let

PK be a prime of K above p, and let PL be a prime of L above PK . Suppose L/F

is Galois and that PL is unramified in L/F . Let Frob(PL/p) denote the Frobenius

element of PL in Gal(L/F ); similarly for Frob(PL/PK).

(a) Show that

Frob(PL/PK) = Frob(PL/p)f(PK/p),

where f(PK/p) denote the inertial degree of PK in K/F .

(b) If K/F is also Galois, show that

Frob(PK/p) = Frob(PL/p)|K .

(2) Recall that when K/F is an abelian extension of number fields (so that conjugacy

classes in its Galois group are singletons), for a prime p of F , all Frobenius elements

Frob(P/p) for P/p are equal. We denote this common element by Frob(p).

Let n ∈ Z≥3, let Kn = Q(ζn), where ζn is a primitive nth root of unity, and let

F = Q. Recall that Gal(Kn/Q) ∼= (Z/nZ)× where σ ∈ Gal(Kn/Q) is sent to the

unique element aσ ∈ (Z/nZ)× such that σ(ζn) = ζaσn . Let F = Q.

(a) Recall that p is unramified in Kn if and only if p - n. Show that Frob(p) = p ∈
(Z/nZ)×.

(b) For the rest of this problem, let ` be an odd prime. Show that (Z/`Z)× has a

unique index 2 subgroup and that it consists of the squares in (Z/`Z)×.

(c) Recall from class that Q(
√
`∗) is a (from part (b), the) quadratic extension

of Q contained in Q(ζ`), where `∗ = (−1)(`−1)/2)`. Use Question (1) of this

problem set to show that p splits in Q(
√
`∗) if and only if p is a square in

(Z/`Z)×.

(d) From the criterion of prime factorization in quadratic fields (Question (1) of

Problem Set 5), realize that you have given a nice, conceptual proof of the law

of quadratic reciprocity. Snap!

(3) Recall that when K/F is a Galois, but not abelian, extension of number fields, for

a prime p of F , we still have the notation Frob(p), but we mean the conjugacy

class {Frob(P) : P|p} ⊆ Gal(K/F ). We’ll use FrobK/F (p) to emphasize to which
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extension we are referring (another, more standard, notation is

(
K/F

p

)
, referred

to as the Artin symbol of p in K/F ).

Let K1, K2 be two number fields, both containing the number field F , and let

L = K1K2 be their composite (i.e. the smallest field containing both of them).

Suppose Ki are Galois are F .

(a) Show that L is Galois over F and the natural map

Gal(L/F )→ Gal(K1/F )×Gal(K2/F )

given by σ 7→ (σ|L1 , σ|L2) is injective.

(b) Show that under this map FrobL/F (p) 7→ FrobK1/F (p)× FrobK2/F (p).

(c) Show that p splits completely in L/F if and only if it splits completely in both

L1/F and L2/F .

(d) In 1880, Frobenius proved the following (well, he proved something more gen-

eral called the Frobenius density theorem): letK/F be Galois and let Spl(K/F )

be the set of all primes of F that split completely in K, then Spl(K/F ) has

density
1

[K : F ]
in the set of all primes.1 Use this to show the following amazing

theorem: a Galois extension K/F is determined by the set Spl(K/F ). What?!

(e) The previous part screams for us to ask: what sets of prime ideals can arise as

Spl(K/F ) as K runs over finite Galois extensions of F?

Let F = Q. The Kronecker–Weber theorem states that every abelian extension

K of Q is contained in some cyclotomic extension Q(ζf).
2 Using this theorem,

1Here by density, we mean what’s called the natural density : if P is a set of prime ideals of F , then
its natural density is

lim
X→∞

#{p ∈ P : NF/Q(p) ≤ X}
#{p : NF/Q(p) ≤ X}

(if the limit exists). Frobenius originally proved his theorem with the notion of Dirichlet density, if I
remember correctly, but it holds with the stronger notion of natural density, which is also more, well,
natural. The more well-known density theorem is the Chebotarëv density theorem, a strengthening of
Frobenius’ density theorem (and in fact, it was a conjecture of Frobenius). It states that the density of
prime ideals p of F whose Frobenius conjugacy class Frob(p) is a fixed conjugacy class C of the Galois

group G of K/F is
#C

#G
(i.e. the Frobenii are equidistributed with respect to the counting measure on

G). If you apply this to Q(ζn)/Q you get Dirichlet’s theorem on primes in arithmetic progression.
2The least f for which this is true is called the conductor of K/Q, not to be confused with the notion

of conductor we came across earlier concerning subrings of the rings of integers. (Technical comment:
usually one considers the conductor to be not just an ideal, but to also have an infinite component which
for extensions of Q is just whether or not ∞ “divides” the conductor. The conductor is divisible by
infinity if and only if K is not contained in the maximal totally real subfield of Q(ζf). Thus the infinite
component is just about whether the real place of Q must become complex or not.)
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show that the sets Spl(K/Q) that arise as K runs over abelian extensions of Q

consist of the congruence conditions mod n as n varies over integers ≥ 3 and

the congruence conditions form a proper subgroup of (Z/nZ)×.

(4) In this exercise, you’ll show that the conductor of a quadratic field K/Q is equal to

(the absolute value of) its discriminant. Let Kn denote Q(ζn).

(a) Let D = |∆K |. Show that KD contains K = Q(
√

∆K).

(b) Question (1) of Problem Set 5 tells you how rational primes factor in K. Show

that the factorization behaviour of primes in K is given by a congruence con-

ditions modulo D and not modulo any smaller integer.

(c) Conclude from the above problems that KD is the smallest cyclotomic field

containing K.
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