Problem set 7 — Math 699 — Algebraic number theory

(1) Let L/K/F be a tower of extensions of number fields. Let p be a prime of F, let
P be a prime of K above p, and let P be a prime of L above Px. Suppose L/F
is Galois and that B, is unramified in L/F. Let Frob(*./p) denote the Frobenius
element of B, in Gal(L/F); similarly for Frob(B./Px).

(a) Show that
Frob(5s/Fx) = Frob(By/p)/ P19

where f(Bx/p) denote the inertial degree of Py in K/F.
(b) If K/F is also Galois, show that

Frob(Px /p) = Frob(P/p)|x -

(2) Recall that when K/F is an abelian extension of number fields (so that conjugacy
classes in its Galois group are singletons), for a prime p of F', all Frobenius elements
Frob(B/p) for PB/p are equal. We denote this common element by Frob(p).

Let n € Zss, let K,, = Q((,), where (, is a primitive nth root of unity, and let
F = Q. Recall that Gal(K,/Q) = (Z/nZ)* where o € Gal(K,,/Q) is sent to the
unique element a, € (Z/nZ)* such that o((,) = (. Let F' = Q.

(a) Recall that p is unramified in K, if and only if p f n. Show that Frob(p) =p €
(Z/nZ)*.

(b) For the rest of this problem, let ¢ be an odd prime. Show that (Z/¢Z)* has a
unique index 2 subgroup and that it consists of the squares in (Z/¢Z)*.

(¢) Recall from class that Q(v/¢*) is a (from part (b), the) quadratic extension
of Q contained in Q({;), where £* = (=1)~V/2¢. Use Question (1) of this
problem set to show that p splits in Q(+/¢*) if and only if p is a square in
(Z/0Z)*.

(d) From the criterion of prime factorization in quadratic fields (Question (1) of

Problem Set 5), realize that you have given a nice, conceptual proof of the law

of quadratic reciprocity. Snap!

(3) Recall that when K/F' is a Galois, but not abelian, extension of number fields, for
a prime p of F, we still have the notation Frob(p), but we mean the conjugacy

class {Frob(B) : Blp} € Gal(K/F). We'll use Frobg,r(p) to emphasize to which



K/F
extension we are referring (another, more standard, notation is (L), referred
to as the Artin symbol of p in K/F).
Let K, Ky be two number fields, both containing the number field F, and let

L = K;K5 be their composite (i.e. the smallest field containing both of them).
Suppose K; are Galois are F.

(a) Show that L is Galois over F' and the natural map
Gal(L/F) — Gal(K;/F) x Gal(Ky/F)

given by o — (o|r,,0]|r,) is injective.
(b) Show that under this map Froby,p(p) — Frobg, /r(p) x Frobg, p(p).

(c) Show that p splits completely in L/F" if and only if it splits completely in both
Ll/F and LQ/F

(d) In 1880, Frobenius proved the following (well, he proved something more gen-
eral called the Frobenius density theorem): let K/F be Galois and let Spl(K/F)
be the set of all primes of F' that split completely in K, then Spl(K/F) has
density ﬁ in the set of all primes|!| Use this to show the following amazing
theorem: a Galois extension K/F is determined by the set Spl(K/F). What?!

(e) The previous part screams for us to ask: what sets of prime ideals can arise as
Spl(K/F) as K runs over finite Galois extensions of F'7
Let F' = Q. The Kronecker—Weber theorem states that every abelian extension

K of Q is contained in some cyclotomic extension Q(Cf).ﬂ Using this theorem,

'Here by density, we mean what’s called the natural density: if P is a set of prime ideals of F, then
its natural density is

- #{peP:Npqp) <X}
X—=oo  #{p: Npjqp) < X}

(if the limit exists). Frobenius originally proved his theorem with the notion of Dirichlet density, if 1
remember correctly, but it holds with the stronger notion of natural density, which is also more, well,
natural. The more well-known density theorem is the Chebotarév density theorem, a strengthening of
Frobenius’ density theorem (and in fact, it was a conjecture of Frobenius). It states that the density of
prime ideals p of F whose Frobenius conjugacy class Frob(p) is a fixed conjugacy class C of the Galois

C
group G of K/F is #—G (i.e. the Frobenii are equidistributed with respect to the counting measure on

G). If you apply this to Q(¢,)/Q you get Dirichlet’s theorem on primes in arithmetic progression.

2The least § for which this is true is called the conductor of K/Q, not to be confused with the notion
of conductor we came across earlier concerning subrings of the rings of integers. (Technical comment:
usually one considers the conductor to be not just an ideal, but to also have an infinite component which
for extensions of Q is just whether or not co “divides” the conductor. The conductor is divisible by
infinity if and only if K is not contained in the maximal totally real subfield of Q({j). Thus the infinite
component is just about whether the real place of Q must become complex or not.)
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show that the sets Spl(K/Q) that arise as K runs over abelian extensions of Q
consist of the congruence conditions mod n as n varies over integers > 3 and

the congruence conditions form a proper subgroup of (Z/nZ)*.

(4) In this exercise, you'll show that the conductor of a quadratic field K/Q is equal to
(the absolute value of) its discriminant. Let K,, denote Q((,).

(a) Let D = |Ak|. Show that Kp contains K = Q(v/Ag).

(b) Question (1) of Problem Set 5 tells you how rational primes factor in K. Show
that the factorization behaviour of primes in K is given by a congruence con-

ditions modulo D and not modulo any smaller integer.

(c¢) Conclude from the above problems that Kp is the smallest cyclotomic field

containing K.



