Problem set 8 – Math 699 – Algebraic number theory

- (1) Let $K = \mathbf{Q}(\sqrt[3]{2})$ and take the power basis $\{1, \sqrt[3]{2}, \sqrt[3]{4}\}$ for \mathcal{O}_K .
 - (a) Find the image of this basis under $j_{\mathbf{R}}$ in the Minkowski space \mathbf{R}^3 .
 - (b) Show that this is an orthogonal basis of the lattice $j_{\mathbf{R}}(\mathcal{O}_K)$.
- (2) Let K be a number field and let \mathfrak{a} be an integral ideal of K. We define its *absolute* norm to be $\mathcal{N}(\mathfrak{a}) := [\mathcal{O}_K : \mathfrak{a}] = \#\mathcal{O}_K/\mathfrak{a}$. The use of the term 'norm' is because the ideal norm $\mathcal{N}_{K/\mathbf{Q}}(\mathfrak{a})$ is generated by the absolute norm of \mathfrak{a} .
 - (a) Show that if $\mathfrak{a} = \mathfrak{p}$ is prime and \mathfrak{p} is a factor of the rational prime $p \in \mathbb{Z}$, then $\mathcal{N}(\mathfrak{a})$ is p^f for some $f \ge 1$. (And what do you think that f is?)
 - (b) Show that if \mathfrak{p} and \mathfrak{p}' are distinct primes of K, then $\mathcal{N}(\mathfrak{p}\mathfrak{p}') = \mathcal{N}(\mathfrak{p})\mathcal{N}(\mathfrak{p}')$ and $\mathcal{N}(\mathfrak{p}^e) = \mathcal{N}(\mathfrak{p})^e$. (Hint: Chinese Remainder Theorem and think of $\mathfrak{p}^i/\mathfrak{p}^{i+1}$ as an $\mathcal{O}_K/\mathfrak{p}$ -vector space.) Conclude that the absolute norm is multiplicative.
 - (c) Show that if $\alpha \in \mathfrak{a}$, then $\mathcal{N}(\mathfrak{a}) \mid \mathcal{N}_{K/\mathbf{Q}}(\alpha)$ and $\mathcal{N}(\mathfrak{a})\mathbf{Z} = \mathcal{N}_{K/\mathbf{Q}}(\alpha)\mathbf{Z}$ if and only if $\mathfrak{a} = \alpha \mathcal{O}_K$.
- (3) The Minkowski bound can be used to show that certain ideals are principal. Recall that for a number field K, the Minkowski bound is $M_K := \left(\frac{4}{\pi}\right)^{r_2} \frac{n!}{n^n} \sqrt{|\Delta(K)|}$ (well, I think in class I called this B_K ...). Show that if $M_K < 2$, then every ideal of K is principal, i.e. K has class number 1. (By my count, there are 16 such fields.)
- (4) For the following number fields K and sets X of ideals of K, show that every ideal in X is principal.
 - (a) $K = \mathbf{Q}(\sqrt{17}), X =$ the primes dividing 2. (Hint: first, recall that we had a theorem that gives a set of two generators for the primes dividing a rational prime, see e.g. Neukirch Prop. 8.3; second, here, show that one of the ideals is generated by $(3 \sqrt{17})/2$ while the other is generated by $(-5 + \sqrt{17})/2$).
 - (b) $K = \mathbf{Q}(\sqrt[3]{2}), X =$ the prime dividing 3.
 - (c) $K = \mathbf{Q}(\sqrt{2}, \sqrt{3}), X =$ the prime dividing 2. (Hint: your work Question (7) of Problem Set 4 might be useful).
- (5) Show that the primes dividing 2 and 3 in $K = \mathbf{Q}(\sqrt{-5})$ are not principal.