
Problem set 9 – Math 699 – Algebraic number theory

(1) For d = −1,−2,−3,−7,−11,−19,−43,−67,−163, show that Q(
√
d) has class num-

ber 1. (These are the only 9 imaginary quadratic fields of class number 1. More

generally, a CM field is a totally imaginary quadratic extension of a totally real

field, and Stark has conjectured that there are only finitely many CM fields of class

number 1.)

(2) For m = 3, 4, 5, 7, 8, 9, 12, show that Q(ζm) has class number 1. (If m ≡ 2 (mod 4),

then Q(ζm) = Q(ζm/2), so this list of m’s is all cyclotomic fields with m ≤ 12,

except 11. This latter one has Minkowski constant 58.96 . . . , and so would be a bit

more work, though it’s not so much work to show that you’d only have to check the

10 primes above 23.)

(3) Determine the class group of Q(
√

2,
√

3). (Question (4c) of Problem Set 8 will help.)

(4) (Murty–Esmonde, Exercise 6.5.24) In this exercise, you’ll construct a family of imag-

inary quadratic fields whose class number goes to infinity. (In his Disquisitiones

Arithmeticae, Gauss conjectured that as the discriminant of an imaginary quadratic

field goes to (minus) infinity, so does its class number. This was proved by Heilbronn

in 1934. Gauss also conjectured that there are infinitely many real quadratic fields

of class number 1. This remains open (bonus points for solving!).)

(a) Let ` ≡ 11 (mod 12) be prime. Show that p = 3 splits in K = Q(
√
−`).

(b) Show that if ` > 3n and α ∈ OK has norm 3m with m < n, then m is even.

(c) Suppose ` > 3n and let p be one of the primes above 3 in Q(
√
−`). Show that

pm can’t be principal for m < n. Conclude that [p] ∈ C`(K) has order at least

n. (In the next exercise, you’ll prove that there are infinitely many primes

` ≡ 11 (mod 12).)

(5) (Murty, Primes in certain arithmetic progressions) Dirichlet’s theorem on primes

in arithmetic progression states that, for any a,m ∈ Z≥1 with gcd(a,m) = 1, there

are infinitely many primes ` ≡ a (mod m). Dirichlet introduced the L-functions of

Dirichlet characters and generalized Euler’s proof of the infinitude of primes to prove

this theorem. For certain pairs (a,m), there is a more elementary proof along the

lines of Euclid’s proof of the infinitude of primes, such a proof is called ‘Euclidean’.

In part (a), you’ll go through this proof for the pair (1, 4) which is a standard result

proved in an elementary number theory course. Then, you’ll do it for (11, 12). Ram
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Murty’s paper shows that there is a “Euclidean” proof for (a,m) if and only if

a2 ≡ 1 (mod m).

(a) Suppose that S = {p1, . . . , pk} is a set of primes that are 1 (mod 4). Consider

N = 4(p1 · · · pk)2 + 1. Show that if p|N , then p 6∈ S and −1 is a square modulo

p, and hence that p is another prime that is 1 (mod 4).

(b) Go to Ram Murty’s website (http://www.mast.queensu.ca/~murty/index2.

html) and download his paper. Extract from it the polynomial required for the

pair (11, 12), and maybe go through the proof that there are infinitely many

primes ≡ 11 (mod 12).
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