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1 Some notation:

N = 0, 1, 2, 3, . . . (The natural numbers) Note⇓

Z = 0,±1,±2,±3, . . . (The integers)

Q = {pq : p, q ∈ Z, q 6= 0} (The rational num-

bers)

R =the real numbers

Z+ = 1, 2, 3, . . . (The positive integers, or whole

numbers) (also N+) Note⇓

Q+ = {r ∈ Q : r > 0} (The positive rational

numbers)

R+ = {r ∈ R : r > 0}(The positive real num-

bers)

Warning⇑ The text exactly reverses the mean-

ings of “whole number” and “natural number”.

From now on, I’ll (reluctantly) conform to the text’s

horrible use, ie

N = {1, 2, 3, 4, . . .}
Whole numbers = {0, 1, 2, 3, 4, . . .}
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A bit more notation (useful shorthand):

∀ means “for all” or “for every”

∀ is never used in isolation, but together

with a variable, i.e. ∀x or ∀n

∃ means “there exists” or “there is at least one”;

also not used alone

Examples:

∀x(x = x)

“For every x, x = x” (In other words, every

number equals itself.)

∃n ∈ Z(n + 1 = 0)

“For some integer n, n+ 1 = 0”. . . but note

that it is not true that ∃n ∈ N(n + 1 = 0)

∀x∃y(x < y)

“For every x there is at least one larger y.”

Note true for N,Z,Q, etc.

∃x∀y(x < y)

“There exists an x such that for every y,

y > x.” This is always false, since no x is bigger

than itself.
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2 Sets

• A set is a collection of objects.

• This seems to be a vague and circular defini-

tion: what is an object? what is a collection?

• It is too vague; see Russell’s paradox below.

• We’ll worry about this later (though not much),

not now.

How do we indicate a set?

By explicitly listing all elements:

{1, 2, 3};
{a, b,Harvey}
{}

By implicitly listing all elements:

{1, 2, 3, . . . , 1000};
{a, b, . . . , z};
{Oahu, Maui, Kauai,. . . }

By name: R; N; Q; ∅

By description, using set-builder notation:

{n ∈ N | n prime};
{pq | p ∈ Z, q ∈ N};
{n ∈ N |n 6= n}
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Note the use of the symbol ε, meaning “in” or

“element of.”

This is the only ‘primitive’ set operation; every-

thing else will be defined in terms of ε.

We will say synonymously: x ∈ A; “x is an ele-

ment of A”; “A contains x”
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Notation and operations:

Extensionality: A set is completely determined

by its contents, not how that set is presented.

So, the following sets are all equal:

1. {1, 2, 3, 4, 5, 6, 7, 8, 9}
2. {5, 4, 3, 2, 1, 6, 7, 8, 9} (order doesn’t mat-

ter)

3. {1, 1, 1, 1, 1, 2, 3, 4, 5, 4, 3, 2, 1, 9, 6, 7, 8, 9} (du-

plication doesn’t matter)

4. {1, 2, 3, . . . , 9} (as long as the ellipsis is un-

ambiguous)

5. {x ∈ N : 1 ≤ x ≤ 9} (but note how

important specifying the N is!)

When we write A = B (where A and B are sets)

we mean the following synonymous things:

1. Every element of A is an element of B and

vice versa.

2. ∀x (((x ∈ A) ⇒ (x ∈ B)) ∧ ((x ∈ B) ⇒
(x ∈ A)))
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2.1 Set relations

Subsets

Definition: A ⊆ B (A is a subset of B) if every

element of A is an element of B.

Equivalently: A ⊆ B if ∀x (x ∈ A⇒ x ∈ B)

Equivalently: A ⊆ B if ∀x ∈ A (x ∈ B)

Examples :

1. {1, 2, 3} ⊆ {1, 2, 3, 4, 5}
2. {1, 2, 3, 4, 5} 6⊆ {1, 2, 3}
3. To show that A ⊆ B you need to show that

every element of A is an element of B. To

show that A 6⊆ B you need only find one

element of A that is not in B.

4. N ⊆ Z ⊆ Q ⊂ R
5. {1, 2, 3, 4, 5} ⊆ {1, 2, 3, 4, 5}
6. In fact, for any set A, A ⊆ A

7. {} ⊆ {1, 2, 3, 4, 5} (!)

8. In fact, for any set A, ∅ ⊆ A

9. List all the subsets of {1, 2, 3}
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Graphical representations often help our intuition

(class)

Proper Subset: Say that A is a proper subset

of B, A ⊂ B, if A ⊆ B and A 6= B.

Notation: Sometimes you’ll see proper subset writ-

ten as A ( B or A $ B or A & B.

Examples :

1. N ⊂ Z
2. N ⊆ N, but N 6⊂ N
3. List proper subsets of {1,2,3}
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Some Useful Properties:

∅ ⊆ A for any set A (Tricky!)

A ⊆ A for any set A

Transitivity: If A ⊆ B and B ⊆ C than A ⊆ C

(Alternate definition of equality) If A and

B are sets, then A = B if and only if (A ⊆ B

and B ⊆ A)

If A is finite with N elements then A has 2N sub-

sets.
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2.2 Set Operations (union, intersection, set difference, com-
plement)

Intersection: The intersection of two sets is the

set of elements common to both of them.

Equivalently,

A ∩B =def {x |x ∈ A and x ∈ B}

Equivalently,

x ∈ (A ∩B) provided (x ∈ A) ∧ (x ∈ B)

Union: The union of two sets is the set of ele-

ments appearing in either of them.

Equivalently,

A ∪B =def {x |x ∈ A or x ∈ B}

Equivalently,

x ∈ (A ∪B) provided (x ∈ A) ∨ (x ∈ B)
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Examples :

1. {1, 2, 3, 4} ∩ {2, 4, 6, 8} =

2. {1, 2, 3, 4} ∪ {2, 4, 6, 8} =?

3. {2k|k ∈ N} ∩ {3k|k ∈ N} =?

4. {2k|k ∈ N} ∪ {2k + 1|k ∈ N} =?
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Set Difference: The difference of two sets is the

set of elements in one but not the other.

Equivalently,

A−B =def {x |x ∈ A and x 6∈ B}

Equivalently,

x ∈ (A−B) provided (x ∈ A) ∧ (x 6∈ B)

Examples :

1. {1, 2, 3, 4} − {2, 4} =?

2. {1, 2, 3, 4} − {2, 4, 6, 8} =?

3. {2, 4} − {1, 2, 3, 4} =?

4. {2, 4, 6, 8} − {1, 2, 3, 4} =?

5. {1, 2, 3, 4} − {1, 2, 3, 4} =?

6. In fact, for any set A, A− A = ∅

7. N− {2k|k ∈ N} =?

8. {2k|k ∈ N} ∪ {2k − 1|k ∈ N} =?
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Complement: If A ⊂ B then B−A is the com-

plement of A in B.

If all setsA under consideration are assumed to be

subsets of some particular set U (universe of

discourse) then U −A is just the complement

of A, and we denote it by A{ (or A′ in some

texts, including ours).

Example The complement of the set of even nat-

ural numbers in N is the set of odd natural

numbers.

Pictures:
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2.3 Some useful properties

Associative laws:

(1) A ∩ (B ∩ C) = (A ∩B) ∩ C

(2) A ∪ (B ∪ C) = (A ∪B) ∪ C

Distributive laws:

(3) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)

(4) A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)
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DeMorgan laws:

(1) A− (B ∪ C) = (A−B) ∩ (A− C)

(1′) (B ∪ C){ = B{ ∩ C{

(2) A− (B ∩ C) = (A−B) ∪ (A− C)

(2′) (B ∩ C){ = B{ ∪ C{
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Misc.

(1) If A ⊆ B then A ∩B = A and A ∪B = B

(2) (In fact, if A ∩ B = A or A ∪ B = B then

A ⊆ B)

(For the rest of the properties, assume there’s a

universal set U)

(3) (A{){ = A

(4) A ∩ A{ = ∅; A ∪ A{ = U

(5) If A ⊂ B then B{ ⊂ A{
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2.4 Why rigor is necessary

Russell’s Paradox:

Consider the following definition of a set:

W = {x | x 6∈ x}

Suppose W 6∈ W .

Then W satisfies the definition of W , so W ∈ W .

So W must be in W , W ∈ W .

But to be in W an object must not contain itself,

so W 6∈ W .

Uh oh.
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The real conclusion to the above paradox is that

the formula we gave above does not properly

define a set; there is no “set of all sets.”

So, how do we know whether the things we write

down are really sets?

The Modern Approach: wrote down formal prop-

erties for sets corresponding to our intuition,

try not to include enough properties to con-

struct something paradoxical.

For this class we will focus on basic set operations

and try not to worry too much whether the the

things we have written down are actually sets.

However, the defining properties should always

be clear enough that if the thing we define is a

set, then there is no doubt what the elements

of that set would be.
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2.5 Ordered pairs, triples, n-tuples, Cartesian products

Definition: An ordered pair is an object (a, b)

with the property:

(a, b) = (c, d) if and only if a = c and b = d

EG: If x, y ∈ R then (x, y) is a point in the plane

(and vice versa)

Note that order counts: if (a, b) = (b, a) then

a = b

So (2, 3) 6= (3, 2) but (3, 3) = (3, 3)

Remark: Difference between (2, 3) and {2, 3}
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Can have ordered pairs of things other than num-

bers numbers, eg (Taylor Swift, Aloha Tower)

Definition: If A and B are sets, the Cartesian

product of A and B is

A×B =def {(a, b) : a ∈ A, b ∈ B}

EG: Famous Dogs × Transcendental Numbers =

{(Lassie, π), (Rin Tin Tin, e), (Cujo, π), . . . }

More generally: Can generalize to ordered triples

(a, b, c), or ordered n−tuples (x1, x2, . . . , xn)

EG: R× R× R (or R3) =

{(a, b, c) : a, b, c ∈ R} =3-dimensional space

The 4-tuple (Cujo, David Ross, Eiffel Tower, 17)

is an element of

Famous Dogs × UH Math Professors × French

Buildings × Primes
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Counting principle: If A,B are finite sets, A

has n elements, and B has m elements, then

A×B has mn elements.

More generally, if A1, A2, . . . , Ak are finite with

(respectively) n1, n2, . . . , nk elements thenA1×
A2 × · · · × Ak is finite with n1n2n3 · · ·nk ele-

ments.

EG: Roll 4 dice, number of different throws =?

EG: From a deck of cards, how many ways are

there to pick one card from each suit?
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2.6 Cardinality

Start simple: How many elements are there in

the following sets?

1. {}
2. {2, 4, 6, 4, 2}
3. {0, 1, 2}

What about N? R?

What if we don’t know what “how many” means?
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Start simpler: Define what it means for two sets

to be the same size:

Definition: A set A is conumerous with B pro-

vided A and B can be put into a one-to-one

correspondence. (Picture)

Other, equivalent notation/terminology for “A is

conumerous with B”:

a. A and B have the same number of ele-

ments

b. A and B have the same cardinality

c. card(A) = card(B)

Examples: 1. The sets above.

2. Finite sets and von Neumann natural num-

bers; definition of finite.
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Galileo Galilei, 1638

{0, 1, 2, 3, 4, 5, 6, 7, 8, . . . } (= N)

and

{0, 1, 4, 9, 16, 25, 36, 49, 64, . . . } (= {n2 : n ∈ N})

are conumerous.
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More examples:

1. N and N− {0} (cf Hilbert’s Hotel)

2. N and Z
3. Any two line segments (in the plane)

4. The real interval (0, 1) ⊂ R and all of R
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We now have:

Finite sets: card(A) = card({0, 1, 2, . . . , n−1})
for some n ∈ N

Infinite sets: N,N− {0},Z - all have the same

cardinality

More infinite sets: (0, 1),R, any line segment

in plane - all have same cardinality

Questions: 1. Do N and R have the same cardi-

nality? (Answer: No)

2. If not - what is the relationship between

these orders of infinity?

3. (Continuum hypothesis) Is there a set

E such that N ⊂ E ⊂ R and card(N) 6=
card(E) 6= card(R)?
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Theorem (Cantor): card(R) 6= card(N)

Proof:

27



Definition: An infinite set A is countable (or de-

numerable, or enumerable) if it has the same

cardinality as N.

So: N,N− {0},Z are countable.

R is not countable.

What about Q?
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Some useful (obvious?) facts

Theorem For any sets A,B, and C:

1. A has the same cardinality as A

2. If A has the same cardinality as B then B

has the same cardinality as A

3. If A has the same cardinality as B and B

has the same cardinality as C then A has

the same cardinality as C

Definition: A has no greater cardinality than

B (or card(A) ≤ card(B)) provided A has the

same cardinality as some subset of B, that is,

for some C ⊆ B, card(A) = card(C)

29



Some terminology

The cardinal number of a setA is the collection of

all sets with the same cardinality as A. (Warn-

ing!)

A set is countable if it is either finite or countably

infinite, otherwise it is uncountable.

A countably infinite set is said to have cardinal

number (or cardinality) ℵ0
A set with same cardinality as R is said to have

cardinality of the continuum (or cardinal num-

ber c, or sometimes 2ℵ0, for reasons that will

be clear later).
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Two statements that show that ℵ0 is

the smallest infinite cardinality

I. Every infinite set contains a countably infinite

subset.

II. Every subset of a countably infinite set is count-

able.

(Proof of I)
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(Cantor-Schröder-Bernstein) If card(A) ≤
card(B) and card(B) ≤ card(A) then card(A) =

card(B)

Examples:

(0, 1) ⊆ [0, 1] ⊂ R, so...

Property II from previous page.
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Remark on Axiom of Choice

We know that for every infinite set A, card(A) <

card(N) or card(A) = card(N) or card(N) <

card(A). (Why?)

In other words, N is comparable to all other sets.

We’d like all sets to be comparable, since then

cardinalities would ‘line up’ (picture)

Zermelo’s Axiom of Choice (AC): If A is any

collection of disjoint nonempty sets, then there

is a new set containing exactly one element

from each of the given sets. (picture)

Theorem: If AC is true then all sets are com-

parable in the sense that ∀A∀B
(

card(A) ≤
card(B) ∨ card(B) ≤ card(A)

)
Theorem (Paul Cohen) AC is independent of

the other axioms of set theory.

To choose one sock from each of

infinitely many pairs of socks requires

the Axiom of Choice, but for shoes the

Axiom is not needed.

– Bertrand Russell
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More examples

I. The algebraic numbers are countable. (We’ll

define “algebraic” and “transcendental” later.)

Note that it follows that there exist at least one

transcendental number.

II. Let S be the interior of the unit square in the

plane,

S = {(x, y) : 0 < x, y < 1},

sometimes denoted by (0, 1) × (0, 1). Then S

has cardinality c, that is, card(S) = card((0, 1)).

III. (Cantor) For any setA, card(A) 6= card(P (A))

(in fact, card(A) < card(P (A)) (Note: P (A)

is the set of all subsets of A.)

Note that means that

card(N)
ℵ0

< card(P (N))
2ℵ0

< card(P (P (N)))

22
ℵ0

< · · ·

GCH (General Continuum Hypothesis) For any

infinite set A, there is no cardinality between

card(A) and card(P (A))

(Cohen) This is independent of the usual axioms

of set theory
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3 Formal/Symbolic Logic - General

• What statements are true or false by virtue of

form alone?

• Formal v. informal logic

Some reasons to formalize logic:

• Make determining the truth of difficult logical

statements a matter of simple calculation.

• Clarify which deductive methods (classical forms)

are sound (correct) or necessary.

• Make it possible to formalize other disciplines

(mathematics, computer science, others)

– Automated theorem proving and program

verification

– Generalization through abstraction

– Limits of mechanical thought; free will vs.

determinism

• Problems with informal reasoning.

(Ionesco, Rhinoceros; Schulman, Life and loves

of Dobie Gillis)
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Considerations in establishing a formal

system:

• Should not be unnecessary cumbersome, diffi-

cult to use, or difficult to typeset

(Examples: Lull et al; Lewis Carroll; Frege;

Principia Mathematica; RPN; JSL)

• Should correspond to intuition.

• Should be extensive enough to cover all sita-

tions of interest.

• Should be small enough to be tractable.

• (Propositional logic; Predicate Logic [aka First

Order Logic]; Higher order logics and infinitary

logics.)

• Should allow for a distinction between syntac-

tic and semantic argument. (more later)

• Should be amenable to metamathematical anal-

ysis, for example, mathematical proofs about

statements about the logic.
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Steps in practice:

• Decide on the appropriate formal system (this

class: propositional logic or predicate logic)

• Translate statements from English into the for-

malism (3.1 in our text)

• Analyze using the logic rules
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4 Logical connectives (negation, disjunction, con-
junction, implication)

The following are examples of statements that

have (or might have) a definite truth value,

that is, be either true or false:

1. 5 + 7 = 12

2. 5 + 7 = 14

3. My dog is black.

4. The King of France is bald.

5. x = 5

6. A > B

Note that the truth value of the last two can

change, depending on the values of x, or of A

and B. Nevertheless, they are assertions that

might have a truth value, and will do if x,A,B

take on values.

Similarly, the truth value of (4) is a matter of some

debate; it depends on whether you interpret the

sentence as asserting the existence of a King of

France.

For comparison, here are some sentences with no

notion of a truth value:
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1. Ouch.

2. Let x be an integer.

3. Smell the ocean!

A statement that has (or could have) a truth value

is called a proposition; the terms ‘proposition’,

‘assertion’, and ‘statement’ are generally used

interchangeably.

A logical connective is an operation we apply to

one or more proposition to get a new proposi-

tion.

We will look at the following logical connectives:

implication ( =⇒ ), negation (∼), disjunction

(∨), conjunction (∧ or &).
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4.1 Implication

Suppose A and B are propositions. The following

are all different ways of saying the same thing:

If A then B

A implies B

A, therefore B

A is sufficient for B

For B it is sufficient that A

B is necessary for A

B follows from A

A =⇒ B

Intuitively, if A =⇒ B and A is true then

this ‘forces’ B to be true as well. However, if A is

false then it doesn’t force anything about B. We

therefore say that A =⇒ B is true unless A is

true and B is false.
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Examples (determine the truth value if possible)

1. If 1 + 1 = 2 then 1 + 1 = 3.

2. If 1 + 1 = 3 then 1 + 1 = 2.

3. Sunlight is necessary for photosynthesis. (Equiv-

alently, “if there is photosynthesis, then there

is sunlight.”)

4. For N to be composite it is sufficient that ∃p >
1 (p|N). (Equivalently, ”∃p > 1 (p|N) is suf-

ficient for N to be composite;” or, “if ∃p >

1 (p|N) then N is composite.”)

Note:

• “Composite”, for natural numbers, means “not

prime” (so 2, 3, and 5 are prime, 4 and 6 are

composite)

• a|b is shorthand for “a divides b” or “b is evenly

divisible by a”
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4.2 Negation

Suppose A is a propositions. The following are all

different ways of saying the same thing:

A is false.

A is not true.

Not A.

∼ A

Intuitively, (∼ A) has the opposite truth value

of A, and is called a negation of A. Given a state-

ment, you can always find a negation by putting

“not” in front of it or “is false” after it. However,

recognizing that one statement is a negation of an-

other is not always easy - in math, or in life.
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Examples

1. The moon is made of green cheese.

Some Negations:

(a) The moon is not made of green cheese.

(b) It is false that the moon is made of green

cheese.

(c) The moon fails to be made of green cheese.

Some Invalid Negations

(a) The moon is made of poi.

(b) Mars is made of green cheese.

One way to recognize that B is a negation of A

is:

If A is true then B must be false.

If A is false then B must be true.

If one or both of the “must be” statements is not

a real “must” then B is not a negation of A.
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2. Which are negations of 1 + 1 = 2?

(a) 1 + 1 6= 2

(b) 1 + 1 = 0

The question of whether 1 + 1 = 0 is a negation

of 1 + 1 = 2 is an extremely subtle one. They

certainly have opposite truth values, but one can

imagine a universe in which they are both true.

(Can’t you? How about 6 + 6 = 0? Hint: clock

arithmetic.)

We will generally only use the term negation

when referring to “syntactic” opposites.
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3. Which are negations of “All mathematics pro-

fessors eat kittens”?

(a) No mathematics professors eat kittens.

(b) Some mathematics professors don’t eat kit-

tens.

(c) All mathematics profeesors eat only dogs.

(d) David Ross doesn’t eat kittens.'

&

$

%

Negating sentences beginning with “All” or “Ev-

ery” or ∀x:

A negation of “∀x Φ(x)” is “∃x(∼ Φ(x))”

(Recall that ∃x · · · means “there exists an x such

that · · · ” or “Some x are · · · ” or “For at least

one x, · · · ”, etc.)

4. Find negations:

(a) Every good boy does fine.

(b) All politicians are liars.

(c) ∀N 5|N . (Note: 5|N means “5 divides N”

or “N is evenly divisible by 5”

(d) No mathematics professors eat kittens.

So - to prove that a ‘for all x” statement is

false, you only need to find one x that makes
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it false. This is sometimes called Disproof by

Counterexample.
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5. What is a negation of “If 3|N then N is com-

posite”?

(Answer: “3|N and N is prime.”)

Note that the only way A =⇒ B can be false is

whenA is true butB is false. To negateA =⇒
B we want something which is only true in this

situation, and the obvious statement is then

“A∧ ∼ B”.

Two more remarks about negation:

1. ∼∼ A is equivalent to A

2. Recall that

A =⇒ B

is equivalent to

(∼ B) =⇒ (∼ A)

(contrapositive)
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4.3 Conjunction, disjunction

Suppose A and B are propositions. The following

are all different ways of saying the same thing:

A and B are true.

Both A and B are true.

A is true and B is true.

A and B.

A ∧B.

A&B.

A∧B is true when both A and B are true, and

false if either of them is false. This connective is

called conjunction.

Examples

1. 1 + 1 = 2 and 2 + 2 = 4

2. 1 + 1 = 2 and 2 + 2 = 6

3. Abraham Lincoln was the President of the United

States and a famous cosmonaut.
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Suppose A and B are propositions. The following

are all different ways of saying the same thing:

A or B are true.

Either A or B are true.

Either A is true or B is true or both are true.

A is true or B is true.

A or B.

A ∨B.

A∨B is true when A is true or B is true or both,

and false if both of them is false. This connective

is called disjunction.

Examples

1. 1 + 1 = 2 or 2 + 2 = 4

2. 1 + 1 = 2 or 2 + 2 = 6

3. 1 + 1 = 3 or 2 + 2 = 6

4. Abraham Lincoln was the President of the United

States or a famous cosmonaut.
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5 Propositional (or sentential) Logic

5.1 Elements of the formal language; Syntax

Symbols:

• Proposition Letters: A B C · · · (or sometimes

A0 A1 · · · , or p q r . . . )

• Logical Connectives: ∧ ∨ =⇒ ∼

• Other (“non-logical”) Symbols: ( )

Formal Definition of a proposition (or sen-

tence, or well-formed formula [abbreviated WFF]):

1. If P is a proposition letter then P is a propo-

sition.

2. If P is a proposition then ∼ P is a proposition.

3. If P and Q are propositions then P ∧Q,
P ∨Q, and P ⇒ Q are propositions.

4. Nothing is a proposition unless defined via rules

(1)-(3).

The importance of this formal definition is (a) it

gives a mechanical way to ‘recognize’ a proper for-

mula, and (b) that such a formal definition can be

done at all!
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Remark: The definition of WFF is an example of

a recursive definition; it explains how to gen-

erate complex propositions from simpler ones:

Simplest: A,B, . . .

Next: ∼ A,∼ B,A∧A,A∧B,B∧B,A∨A,A∨
B,B ∨B,A⇒ A,A⇒ B,B ⇒ B, . . .

Next: A∧ ∼ B,A ∧ A⇒ A ∧B, . . .

etc.

Problem: Needs Disambiguation!

Does something like

∼ p ∨ q

mean we negate p then “or” with q, or do we

“or” with q first then negate? Note that these

give different values!

One solution: use lots of parentheses, eg

((∼ p) ∨ q)

or

(∼ (p ∨ q))
.
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The “formal definition” of WFF can be used to

make this rigorous:

1. If P is a proposition letter then P is a propo-

sition.

2. If P is a proposition then (∼ P ) is a propo-

sition.

3. If P and Q are propositions then (P ∧Q),

(P ∨Q), and (P ⇒ Q) are propositions.

4. Nothing is a proposition unless defined via

rules (1)-(3).

However, this can lead to horrendous expressions,

like

(∼ (∼ (∼ (∼ (∼ (∼ (∼ (∼ p))))))))

instead of the (slightly) less horrific

∼∼∼∼∼∼∼∼ p

Common sense tells us to only use parentheses if

there is danger of misinterpretation.
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5.2 Semantics of Propositional logic:

Semantics (for any logic) refers to the assignation

of meaning to the symbols.

In propositional logic, the ‘meaning’ of a formula

is just a truth value.

Use T to represent ‘True’, F to represent ‘False’

Consider a typical formula: A ∨B
We know that intuitively that the English sen-

tence this represents, “Either A is true or B is

true (or both)” is either true or false depending

on the truth values of A and B. So, a formula

won’t be simply “true” or “false”, but rather

true or false relative to some fixed assignment

of truth values to the most basic subformulas,

the proposition letters.

Definition: A model for a propositional logic is

an assignment of truth values to the proposi-

tion letters.

Remark: Synonyms for model are interpretation

and structure.

Formally, if B is the set of proposition letters of

our logic, then a model is a function M :B→{T,

F}.
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Example: Suppose our logic has only the propo-

sition letters A,B, and C. One model might

be to make A true, and both B and C false.

We might denote this by M (A) = T,M (B) =

F,M (C) = F . Or we could write: “M is the

model A = T,B = F,C = F .” Whatever is

easier!

We already have rules telling us how to piece to-

gether the truth values of complex formulas

from those for simpler ones. For example, with

the model M we just defined, the formula

(A ∨ (∼ (∼ B)))

would have the truth value T, since A is true

and it is a disjunction of A with something.
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For more complicated formulas, it is useful to break

it down by subformula:

Example - using trees Consider the formula:

((A ∨B)⇒ ((∼ A) ∨ (∼ C)))

Here is a “tree” representation we label the tree

nodes (from the bottom-up) with truth values:

A [T] B [F]

�
�
�
�
�

@
@
@
@
@

(A ∨B) [T]

A [T]

(∼ A) [F]

C [F]

(∼ C) [T]

�
�
�
�
�

@
@
@
@
@

((∼ A) ∨ (∼ C)) [T]

���������

HHHHHHHHH

((A ∨B) ⇒ ((∼ A) ∨ (∼ C))) [T]
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We can also do this using the other method of

parsing formulas:

Consider: ((A ∨B)︸ ︷︷ ︸⇒ ((∼ A)︸ ︷︷ ︸∨ (∼ C)︸ ︷︷ ︸)︸ ︷︷ ︸)︸ ︷︷ ︸
Instead of underbracing, let’s assign truth values,

in the same order:

First: ((A
T
∨B

F
)⇒ ((∼ A

T
) ∨ (∼ C

F
)))

Then: ((A
T
∨
T
B
F

)⇒ ((∼
F
A
T

) ∨ (∼
T
C
F

)))

Then: ((A
T
∨
T
B
F

)⇒ ((∼
F
A
T

) ∨
T

(∼
T
C
F

)))

Therefore: ((A
T
∨
T
B
F

)⇒
T

((∼
F
A
T

) ∨
T

(∼
T
C
F

)))

Exercise: verify that in the model withA,B, and

C all True, this formula is false.

Remark on truth tables
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A formula could be true in some models, not true

in others.

In particular, without specifying a model it makes

no sense to say that a WFF is true or false!

Some formulas are true in every model.

Example: (A ∨ (∼ A))

Definition: A WFF φ is valid if it is true in every

model, i.e., if M |= φ for every assignment of

truth values to proposition letters.
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5.2.1 Truth tables

Truth tables are useful tools to look at the behavior

of a formula in all possible models. Each column is

headed by a subformula of the formula being con-

sidered, with the simplest formulas (the proposi-

tion letters that appear in this formula). The rows

contain all possible assignments of truth values to

the proposition letters, and then the corresponding

truth values of the subformulas are determined in

increasing order of complexity.

If the column of truth values below the final for-

mula consists entirely of T, then the formula is

valid (or - in the book’s terminology, a “tautol-

ogy”)

(A ∨ (∼ A))

A (∼ A) (A ∨ (∼ A))

T F T

F T T

(A tautology - the law of excluded middle)
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The Basic Connectives

A (∼ A)

T F

F T

A B (A⇒ B)

T T T

T F F

F T T

F F T

A B (A ∨B)

T T T

T F T

F T T

F F F

A B (A ∧B)

T T T

T F F

F T F

F F F
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Equivalence

A B (∼ B) (∼ A) ((∼ B)⇒ (∼ A))

T T F F T

T F T F F

F T F T T

F F T T T

Note that (A⇒ B) and its contrapositive

((∼ B)⇒ (∼ A))

have the same truth values in all combinations of

the proposition letters.

When two formulas have the same truth values

- in other words, behave the same under all assign-

ments of truth values - they are called logically

equivalent (or just equivalent). We could use the

≡ symbol for this, for example,

(A⇒ B) ≡ ((∼ B)⇒ (∼ A)).

An implication is logically equivalent to its contra-

positive.

Everyone should look at the text for a discussion

of the relationship of the statement A ⇒ B, its

contrapositive, and its converse

B ⇒ A
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More Examples

1. Show (∼ (A ∨B)) ≡ (∼ A∧ ∼ B)

(a “DeMorgan Law”)

2. A⇒ (B ⇒ A)
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3. (A⇒ (B ⇒ C))⇒ ((A⇒ B)⇒ (A⇒ C))

4. ∼∼ A⇒ A
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5. Which of the following are valid? For those

that are not, give a model in which they do

not hold.

(a) (((A⇒ B)⇒ A)⇒ A)

(b) (((A ∨B)∧ ∼ A)⇒ B)

(c) (A⇒ (∼ A ∨B))
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Question: If a formula has N proposition letters,

how many rows will the truth table have?

Remark: More compact truth tables.
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5.2.2 Applications: Deduction Rules

The text (3.6) introduces a way to test the validity

of some argument forms.

These provide a template, where, from certain hy-

potheses (called here premises), a conclusion

can be drawn.

Example: If I am a mathematician then I eat

kittens. I am a mathematician. Therefore I

eat kittens.

This is an example of modus ponens.

It can be represented in a general way as follows:

A⇒ B

A

∴ B

Here A ⇒ B and A are the premises, B is the

conclusion.

A and B can just be proposition letters, or could

stand for more complex well-formed-formulas.

When written in this “propositional logic” form,

we sometimes call such an argument form a

deduction rule.
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You will not be required to know these deduction

rules by name, or even at all (except maybe

modus ponens, which every educated human

should know by name).

Another common rule is modus tollens:

A⇒ B

∼ B

∴ ∼ A

This is the basis of what we sometimes call Proof

By Contradiction

There are a couple of ways to use truth tables to

check the validity of such arguments.

Text: Test validity of

Premise1∧Premise2∧Premise2 · · ·∧PremiseN)

⇒ Conclusion
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Here’s another way:

• Form a truth table containing all premises,

the conclusion, and all subformulas of these

formulas.

• Delete rows in which any premise fails, leav-

ing all and only rows where every premise

is true.

• If the conclusion is true in all of the remain-

ing rows, then it is a valid deduction rule,

otherwise it is not.

(Note the resemblance to the tennis example!)

Example: Verify that modus ponens is valid:

A B (A⇒ B)

T T T

T F F ←− (delete this row)

F T T ←− (delete this row)

F F T ←− (delete this row)
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Example: Verify that the following nameless de-

duction rule is sound:

A⇒ B

∼ B ∨ C
∼ C

∴ ∼ A

A B C ∼ B ∼ B ∨ C ∼ C ∼ A

T T T

T T F

T F T

T F F

F T T

F T F

F F T

F F F
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Example: Is this deduction rule valid?

A⇒ B

B

∴ A

A B (A⇒ B)

T T T

T F F

F T T

F F T
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A Lewis Carroll example

a) All babies are illogical.

b) Nobody is despised who can manage a crocodile.

c) Illogical persons are despised.

Let proposition letters stand for propositions within

the syllogism:

B= one is a baby

L= one is logical

M= one can manage a crocodile

D= one is despised

Carroll’s words can now be translated into for-

mulas:

a’) B ⇒ (∼ L)

b’) M ⇒ (∼ D)

c’) (∼ L)⇒ D

And (next page) a truth table:
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B L M D (∼ L) (∼ D) B ⇒ (∼ L) M ⇒ (∼ D) (∼ L)⇒ D
T T T T
T T T F
T T F T
T T F F
T F T T
T F T F
T F F T
T F F F
F T T T
F T T F
F T F T
F T F F
F F T T
F F T F
F F F T
F F F F
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6 Divisibility and prime numbers

God may not play dice with the universe,

but something strange is going on with the

prime numbers. (Paul Erdos̈)

For a, b ∈ Z, say that a divides b, or b is divisible

by a, if b = an for some n ∈ Z.

Notation: Write a|b if a divides b

We sometimes say that b is a multiple of a, or a

is a divisor of b

In the logic shorthand:

∀a, b ∈ Z
(
a|b if and only if ∃n ∈ Z(an = b)

)
Convention: 0 is divisible by everything, but does

not divide anything: ∀a a|0 but ∀a 0 - a

Examples: 3|27, 4 - 10, 2|any even number

1 has only one divisor, 2 has two divisors (1 and

2), 20 has 6 divisors {1, 2, 4, 5, 10, 20}, 0 has

infinitely many divisors.
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Definition 6.1. A natural number p > 1 is a

prime number provided it is only divisible by

itself and 1

In other words,

p > 1 is prime ⇐⇒ ∀n(n|p =⇒ n = 1 or n = p)

Equivalently, a prime is a natural number with ex-

actly two divisors.

A natural number > 1 which is not prime is called

composite (or simply nonprime).

Examples: 2, 3, 5, 7, 11, 13, 17 are all prime. So

is 224036583 − 1 (this has 7235733 digits, and is

a Mersenne prime).

Convention 0 and 1 are not prime numbers, but

we usually don’t call them composite numbers

either.

Some important facts about primes:

Euclid’s theorem There are infinitely many primes.

(Book IX, Proposition 20)

Fundamental Theorem of Arithmetic Every

natural number greater than 1 can be writ-

ten as the product of primes numbers; more-

over, this prime representation is unique in
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the sense that any other such representation is

just obtained by writing the same primes in a

different order.

Prime Number Theorem The number of primes

between 2 and N is “asymptotically”

N
1
1 + 1

2 + 1
3 + 1

4 + 1
5 + · · · + 1

N

Equivalently, if PN is the N th prime, then PN
is asymptotically approximately

N × (
1

1
+

1

2
+

1

3
+

1

4
+

1

5
+ · · · + 1

N
)

Division Algorithm: Suppose a and d are pos-

itive integers; then there is a unique k ∈ N such

that a = kd + r and 0 ≤ r < d.

(a is the dividend, d the divisor, k the quo-

tient of a by d, and r the remainder)

Euclidean Algorithm: Later (needs more ter-

minology!)

Some things to look up on your own: Illegal

primes, Sieve of Eratosthenes, Primality test, Prime

Number Bear (NSFW!)
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7 Some useful facts about divisibility

Recall: a|b means a divides b, or b is divisible by

a

Lemma 7.1. Let a, b, c ∈ Z. Then:

1. If a|b and a|c then a|(b + c)

2. If a|b and a|c then a|(b− c)

3. If a|b then a|(bc)

4. If a|b and b|c then a|c

5. If a|b and b|a then a = ±b

6. If a|b and a and b are both > 0 then a ≤ b

7. If m 6= 0 and a|b then (am)|(bm)
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Questions:

Why did we avoid division? (Or did we?)

What properties of arithmetic are used in the proofs?

Discuss the path from definition to assertion to

proof.

What is the difference between a ‘Lemma’ and a

‘Theorem’?

Lemma 7.2. Let a ∈ Z, a > 1. Then a has at

least one prime divisor.

Remark: A prime divisor is sometimes called a

factor.

Proof. Class.
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8 Euclid’s theorem

This will be an example of Proof by Contradic-

tion (or reductio ad absurdum).

Idea: To prove a statement S, first assume that S

is false.

Next: Show that this assumption (of S’s falsity)

leads to something which is indisputably false

(eg, “0=1”). At this point we often say “This

is a contradiction”

Conclude: That S must in fact be true.

Remarks:

Let P, Q, R be statements

Modus Tollens: From P =⇒ Q and ∼ Q

infer ∼ P . (In this case, put P =∼ S and

Q = the contradiction.)

Contrapositive: The statement P =⇒ Q is

logically equivalent to its contrapositive (∼ Q) =⇒
(∼ P ).
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Theorem 8.1. (Euclid) There are infinitely many

primes.

Proof. Suppose instead there are only finitely many

primes: 2, 3, 5, 7, 11, . . . , pN

Form the number

M = (2× 3× 5× 7× 11× 13× · · · × pN) + 1

M has a prime factor, p.

p must be one of the primes in the list, so

p|(2× 3× 5× · · · × pN)

Then p|(M − (2× 3× 5× · · · × pN)), i.e., p|1

This is a contradiction (since the only positive di-

visor of 1 is itself).

Corollary 8.1. Let {p1, p2, p3, . . . , pN} be any

finite set of primes. Then any prime factor of

(p1 × p2 × p3 × p4 × p5 · · · × pN) + 1 is different

from p1, . . . , pn

Proof. This is the ‘middle part’ of the proof of Eu-

clid’s Theorem.

78



9 Digression: Theorems and Proofs

Comments on mathematical THEOREMS:

A theorem is a declarative assertion of a mathe-

matical truth.

It generally has some initial statements, called hy-

potheses, which we assume are true just for this

context of the theorem. These typically take

forms such as: “Let p be a prime number...”

or “If m and n are integers...” or “Suppose

x2 + 2x + 1 = 0...” (etc.)

Note that the hypotheses might assert something

about some variables or other mathematical

objects.

It ends with one or more statements, called con-

clusions.

Sometimes the statemet of a theorem is hard to

parse into hypotheses and conclusions.

Conceptually, the form is:

IF hypotheses THEN conclusion(s).
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The terms THEOREM, LEMMA, PROPOSITION,

COROLLARY are all roughly synonymous; the

difference is the depth or difficulty of the argu-

ment:

theorems are major assertions

lemmas are less major assertions, usually just

used as tools in proving theorems

propositions are relatively simple assertions,

sometimes nearly obvious

corollaries follow in a straightforward way ei-

ther from the statement or proof of another

statement (theorem, lemma, proposition, or

other corollary)

Theorems are usually introduced with word ‘The-

orem’ (or ‘Lemma’ etc) and are set off from the

subsequent proof by means of space, different

fonts, or some other way.
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Comments on mathematical PROOF:

We will see several kinds of proofs this term. The

simplest is direct proof

A direct proof takes the form of a sequence of

assertions.

Sometimes these assertions are just a succession of

sentences in English, sometimes they are equa-

tions or other statements expressible in purely

mathematical notation, sometimes a mixture.

Every assertion should be either:

1. A hypothesis of the theorem.

2. A ‘basic’ fact of mathematics, property of

arithmetic or geometry or logic, etc. (An

axiom.)

3. Something that follows ‘logically’ from the

earlier assertions.

The last assertion should be the theorem’s con-

clusion.

Most proofs are variants of direct proof.
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10 Even more number theory

Corollary 10.1. If N is composite than N has

a prime factor ≤
√
N

Proof. Class

Lemma 10.1. If p is a prime number and m,n

are positive integers and p|mn then either p|m ∨ p|n

(Recall: If P and Q are assertions [=“proposi-

tions”] then “P ∨Q” means: either P is true OR

Q is true OR BOTH.)

Proof. Class
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11 GCF, LCM, Division and Euclidean Algo-
rithms

Definition 11.1. Let A,B ∈ N

LCM: The least common multiple of A and B,

LCM(A,B), is the smallest M such that A|M
and B|M .

GCF: The greatest common divisor of A and

B, GCF(A,B), is the largest D such that

D|A and D|B.

Examples (and finding LCM, GCF using Fund.

Thm. of Arith.)
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Remember the Division Algorithm:

Lemma 11.1. Suppose a and d are positive in-

tegers; then there are unique k, r ∈ N such that

a = kd + r and 0 ≤ r < d

Proof. ‘Sketch’ in class.

Lemma 11.2. Suppose a, k, d, r ∈ N and a =

kd + r. Then GCF(a, d)=GCF(d, r)

Proof. Every common divisor of a and d is also a

divisor of a−kd (why?), which is r. Every common

divisor of d and r is also a divisor of kd+r (why?),

which is a. Thus the largest common divisor of a

and d must be the largest common divisor of d and

r
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This lemma has remarkable consequences if we

iterate the Division Algorithm. For example:

100 = (70)(1) + 30

70 = (30)(2) + 10

30 = (10)(3) + 0

At this point we have to stop, but see:

GCF (100, 70) = GCF (70, 30) = GCF (30, 10) = 10

This procedure for finding the GCF of two posi-

tive integers is called the Euclidean Algorithm.
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12 Number Theory Concluded

Let’s review the progression of the results so far:

• We defined the notion of prime and compos-

ite numbers, and set out to understand how

numbers are constructed in terms of primes

(ultimate goal: the Fundamental Theorem of

Arithmetic)

• Introduced the basic notion of divisibility, in-

troduced the notation |, and enumerated a list

of properties for the operation |.

• Started proving increasingly “deep” results about

primes and divisibility. The proof of a given

result often relied on ones that came before.

Often of the results were useful for concrete

operations.

Some of the results:

1. Every positive integer has at least one prime

divisor.

2. Every positive number N has at least one

prime divisor ≤
√
N . (This one is useful in

practice, for testing primality.)

3. There are infinitely many primes. (Intro-
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duced the notion of proof by contradic-

tion.)

4. Division algorithm: Suppose a and d are

positive integers; then there are unique

k, r ∈ N such that a = kd + r and 0 ≤
r < d.

5. Defined LCM and GCF. Showed how the

division algorithm could be turned into a

procedure for finding the GCF of two num-

bers (Euclidean Algorithm)

6. For any M,N ∈ Z+, there is r, s ∈ Z such

that rM + sN = GCF (M,N). (This fol-

lowed by tracing the Euclidean algorithm

backwards.)

7. Used this fact to prove: If p prime and

p|(mn) then p|m or p|n
8. Did some applications (clock arithmetic, ir-

rationality of
√

2).
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General observations:

Only the proof of the Fundamental Theorem of

Arithmetic is left.

The progression from definition (which is meant

to make an intuition rigorous) to the final result

had no holes or guesses; everything was proved

rigorously. This process of Deductive Proof is

what sets mathematical reasoning apart from

most other forms of reasoning.

While the final goal (FTA) has no obvious ap-

plications, along the way it spun off a useful

algorthm (Euclidean Algorithm), and results

like the one in line (6) which are at the heart

of RSA cryptography.
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13 The hierarchy of number systems

God made the integers, all else is the

work of man.

– Leopold Kronecker (1823-1891)

• Start with 0

• As soon as we can add 1 (the successor func-

tion) we get all of N

• In N we can define addition and multiplication,

but we can’t subtract (without sometimes leav-

ing N)

• So: to get subtraction we move to Z, the inte-

gers. (Axioms later.)

• In Z we can add, subtract, and multiply.

• Z is the smallest set of numbers extending N
in which we can do this.

• However in Z we can’t divide. (For example

5÷ 3 is not an integer.)
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• So: to get division we move to Q, the rational

numbers. (Axioms later.)

• In Q we can add, subtract, multiply, and divide

(except by 0).

• Q is the smallest set of numbers extending Z
in which we can do this.

Question: What can’t we do in Q?

Answer (if you’re an electronic calcula-

tor): Nothing.
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Answer (if you’re not a calculator): Plenty

Example:
√

2 is irrational (=“not rational”).

(Equivalently: there is no rational number whose

square is 2.)

(Pythagoras: “The side of a square and its diago-

nal are not commensurate.”)
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Ubiquity of rationals: Between any two dis-

tinct numbers (rational or irrational) there is

another rational number. (That is, Q is dense.)

Ubiquity of irrationals: Between any two dis-

tinct numbers there is an irrational number.

(That is, R−Q is dense.)
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14 Digression: what are natural numbers re-
ally

We all know how to use natural numbers, in-

tegers, etc., but what are they?

Modern solution: write down axioms we be-

lieve they satisfy, then produce a ‘model’

of the set of numbers which shows that the

axioms are consistent.
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For example, here is a formal definition of the

Natural Numbers; it uses two special sym-

bols, a symbol for 0 and a symbol s where

s(x) is meant to be the ‘successor’ of x (i.e.,

x + 1):

Peano Postulates

1. (0 is not the successor of anything)

∀x (0 6= s(x))

2. (different natural numbers have different suc-

cessors)

∀x∀y ((x 6= y)⇒ (s(x) 6= s(y)))

3. (every natural number other than 0 has an

immediate predecessor)

∀x ((x 6= 0)⇒ ∃y (x = s(y)))

4. (dominos1) For any predicate P (x), we have

the axiom:

((P (0)∧∀x(P (x)⇒ P (s(x)))⇒ ∀xP (x))

1aka induction
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Remarkably, this is enough to do anything we

might want to do in N!

Examples:

Any natural number can be represented, for

example 17 is represented by

s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(s(0)))))))))))))))))

Addition can be defined in terms of successor:

x + 0 =def x

x + s(y) =def s(x + y)

For example, 1 + 1 = 2:

2 + 2 = 4:
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The John von Neumann Natural Numbers

To use the Peano Postulates we really need

to know that these formulas are consistent.

The easiest way to show that they are is to

build a ‘model’ with familiar objects that

satisfy these postulates.

J. von Neumann (1903-1957) proposed the fol-

lowing model:

All the elements of this model are sets.

For 0 we take the emptyset, 0 =def ∅
For s we take the function s(x) =def x∪{x}

So:

0 = ∅ = {}
1 = s(0) = ∅ ∪ {∅} = {∅} = {0}
2 = s(1) = 1 ∪ {1} = {0} ∪ {1} = {0, 1}

(or - if you prefer - {∅, {∅}})
3 = s(2) = 2∪ {2} = {0, 1} ∪ {2} = {0, 1, 2}

(or - if you prefer - {∅, {∅}, {∅, {∅}}})
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More Generally:

n+1 = n∪{n} = {0, 1, 2, . . . , n−1}∪{n} =

{0, 1, 2, . . . , n}
Every “von Neumann” natural number is the

set of its predecessors.

Note that the for any m and n in this model,

m < n if and only if m ∈ n

(convince yourself that this is true!), more-

over in this case

m ⊂ n.
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Rationals and Repeating Decimals

Sometimes the digits in the decimal expansion of

a number start repeating after a while.

Examples: 1. 0.3333333 . . .

2. 1.17171717171717 . . .

3. 47.1973402340234023 . . .

4. −12.45

Note: all the above are rational numbers
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Example: 0.99999 · · · = 1

Theorem ∀x (x is a repeating decimal⇒ x ∈ Q)

Equivalently: ∀x (x irrational ⇒ x not a repeat-

ing decimal)

Proof: Clearly we can do to any repeating deci-

mal what we did in the examples above.

Question: Is the converse true?

Is every number whose decimal representation does

not repeat an irrational number?

Equivalently, does every rational number have a

repeating decimal representation?
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Theorem Yes.

Examples: 1. 47/2

2. 47/5

3. 47/25

4. 47/15

5. 12/7
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Some Famous Irrational Numbers
√

2
√
p (for any prime p)

π (= 3.141592653589793238462 . . . )

e (= 2.7182818284590452353602874713526624977572 . . . )

φ (Phi, the Golden ratio) The positive solution to

the following remarkable quadratic equation:

φ2 − φ− 1 = 0

(= 1.618033988749894848204586834365638117720309 . . . )
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Any number of the form p+qz where z irrational,

p, q ∈ Q and q 6= 0

0.101001000100001000001000000100000001 . . .

ζ(3) = 1
13

+ 1
23

+ 1
33

+ 1
43

+ 1
53

+ · · · (“Zeta of 3”)

(= 1.20205690315959428539973816151144999076 . . . )

ζ(n) = 1
1n + 1

2n + 1
3n + 1

4n + 1
5n + · · · is Riemann’s

Zeta Function, and is connected to one of the

most important open problems (the Riemann

Hypothesis, formulated in 1859).

That ζ(3) is irrational has only been known since

1979

We still don’t know many things about ζ(3), in-

cluding whether it is algebraic (next lecture)
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14.1 Algebraic numbers

Two of our main examples were irrational because

they solved simple equations:
√

2 satisfies x2 = 2

φ satisfies φ2 − φ− 1 = 0

Question: Is this why we need the reals? To be

able to solve equations?

Recall: A polynomial is a function that looks like:

anx
n + an−1x

n−1 + an−2x
n−2 + · · ·+ a1x+ a0

a0, a1, . . . , an are the coefficients of the polyno-

mial. Usually assume the leading coefficient

an 6= 0
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Question: If p(x) is a polynomial, when does the

equation p(x) = 0 have a solution?

p(x) = ax + b (linear polynomial), then always.

p(x) = ax2 + bx+ c (quadratic polynomial), then

p(x) = 0

is ‘solved’ by the quadratic formula:

x =
−b±

√
b2 − 4ac

2a

What about cubic? quartic? quintic?
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A brief history of solving polynomial equations

much stolen from:

http://www-history.mcs.st-andrews.ac.uk/history/index.html

Quadratic equation:

a2x
2 + a1x + a0 = 0

400BC Babylonians could solve some problems

that we would formulate as quadratic equa-

tions.

300BC Euclid: geometric solutions of some prob-

lems involving roots, that (again) we would for-

mulate as quadratic equations.

628 Brahmagupta (in Brahmasphutasiddhanta,

or The Opening of the Universe): solves rel-

atively general quadratic equations
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830 Abu Ja’far Muhammad ibn Musa al-Khwarizmi

(member of the Banu Musa, scholars at the

House of Wisdom in Baghdad), in Hisab al-

jabr w’al-muqabala: specific (numerical) ex-

amples of several categories of quadratic equa-

tions, using geometric and algebraic methods

(though all in words).

That fondness for science,...that af-

fability and condescension which God

shows to the learned, that promptitude

with which he protects and supports

them in the elucidation of obscurities

and in the removal of difficulties, has

encouraged me to compose a short work

on calculating by al-jabr and al-muqabala

, confining it to what is easiest and

most useful in arithmetic.

[al-jabr means “restoring”, referring to the pro-

cess of moving a subtracted quantity to the

other side of an equation; al-muqabala is “com-

paring” and refers to subtracting equal quanti-

ties from both sides of an equation.]
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113?CE Abraham bar Hiyya Ha-Nasi (aka Sava-

sorda), in Hibbur ha-Meshihah ve-ha-Tishboret

(Treatise on Measurement and Calculation);

first published complete solution of the quadratic.

Cubic equations:

a3x
3 + a2x

2 + a1x + a0 = 0 (a3 6= 0)

Quartic equations:

a4x
4 + a3x

3 + a2x
2 + a1x + a0 = 0 (a4 6= 0)

(c.f.

www.sosmath.com/algebra/factor/fac111/fac111.html

to see what cubic solution looks like)

1494 Fra Luca Pacioli Summa de arithmetica,

geometrica, proportioni et proportionalita, shows

the quartic x4 = a + bx2 can be solved by

quadratic methods...
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...but asserts x4+ax2 = bandx4+a = bx2 are im-

possible (why?), also says that the cubic can-

not be solved in general.

1515 Scipione dal Ferro, University of Bologna,

solves equations of form x3 + mx = n, but

keeps solution secret.

(This can be used to solve all cubics if you are

comfortable with manipulating negative num-

bers.)

1526 dal Ferro dies, reveals solution on deathbed

to his student Antonio Fior, who is evidently a

braggart.

1535 Nicolo of Brescia, known as Tartaglia, thus

learns that dal Ferro had the solution, and fig-

ures out what it must be. He then announces

that he too can solve the cubic (without re-

vealing his solution). Fior challenges him to

a competition, each posing 30 problems to the

other. Fior cannot solve any of the problems

Tartaglia sets, but Tartaglia figures out a gen-

eralization of the basic solution, and solves all

of Fior’s problems instantly.
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1539 Girolamo Cardano (illegitimate son of a lawyer/geometer

who was a friend of da Vinci, and himself a

doctor/mathematician) tries to get the solu-

tion from Tartaglia for a book in progress. He

agrees he will only publish the method after

Targaglia has a chance to publish it first, and

swears:

I swear to you, by God’s holy Gospels,

and as a true man of honour, not only

never to publish your discoveries, if

you teach me them, but I also promise

you, and I pledge my faith as a true

Christian, to note them down in code,

so that after my death no one will be

able to understand them.

1545 Cardano published Ars Magna, including

solutions of both cubics and quartics (the latter

mainly due to his student Lodovico Ferrari).

1673 Gottfried Wilhelm von Leibniz gives the eas-

iest possible proof that the Cartan solutions ac-

tually work. (Class: show idea for quadratic.)
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Casus Irreducibilis: Fior, Tartaglia, especially

Cartan all noticed: even if a cubic has all three

real roots, to solve for them algebraically you

must take roots of nonreal numbers numbers

at some point. Cartan called this the casus

irreducibilis. Modern methods show that this

is unavoidable.

Quintic: The 5th degree equation

a5x
5+a4x

4+a3x
3+a2x

2+a1x+a0 = 0, a5 6= 0

definitely has a solution:
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1799 Paolo Ruffini announces the general quintic

cannot be solved algebraically. Proof contains

gaps, and announcement is largely ignored, but

estabishes many mathematical facts that are

later used.

1824 Niels Henrik Abel produces first correct proof

of this unsolvability. Not published until well

after his death.

1830++ Evariste Galois establishes a general al-

gebraic theory which not only includes Abel’s

proof, but also a general framework for deter-

mining whether a given equation has an alge-

braic solution. His various papers on the sub-

ject get lost, rejected for spurious reasons, etc.

1831 French revolution. Galois arrested, tried, ac-

quitted. Arrested again on Bastille day, while

in prison learns his most important paper re-

jected for being badly written.

1832 Galois falls in love with daughter of prison

physician. After release from prison tries to

pursue her, is apparently rebuffed. Fights duel,

possibly connected with her, is killed.
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1843 French Academy of Science finally acknowl-

edges Galois work as important, his papers get

published in 1848.

Galois Theory and Impossibility:

Impossibility of solving the quintic.

Impossibility of trisecting an angle.
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Definition: A number is algebraic if it is a solu-

tion to an equation of the form p(x) = 0, where

p(x) is a polynomial with integer coefficients.

A real number is transcendental if it is not alge-

braic.

Examples: 1. −13/17

2.
√

2; φ; 2
1
4

3.
√

3−
√

2

4.
√

5 +
√

7
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So....why R?

Start with a ‘typical’ real number, say π = 3.1415926 . . .

Approximate: 3, 3.1, 3.14, 3.141, 3.1415, · · ·

Note that these rational approximations are in-

creasing, and bounded above (by 4, for exam-

ple).

Another example (continued fraction):

1

1 + 1
1+ 1

1+...

Approximate: 1, 1
1+1,

1
1+ 1

1+1
, 1
1+ 1

1+ 1
1+1

, 1
1+ 1

1+ 1
1+ 1

1+1

, . . .

These rational approximations are increasing, and

bounded above (by 1, for example).

This motivates the following operational defini-

tion:
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The set R of real numbers is the smallest set

which contains Q and satisfies the following

property, the least upper bound (LUB) prop-

erty:

If ∅ 6⊂ A ⊂ R and A is bounded above then

there is a number a such that

(i) ∀x(x ∈ A⇒ x ≤ a)

(ii) ∀y((∀x(x ∈ A⇒ x ≤ y))⇒ a ≤ y)

Example 1
1+ 1

1+ 1
1+...

must be a real number. What

number is it?
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Problem: Even in R we can’t solve some simple

equations, such as:

x2 + 1 = 0

Solution: Extend the system yet again, to the

Complex Numbers C

C will be is the smallest extension of R that sat-

isfies the usual algebraic properties of R and

also contains an ‘imaginary’ element represent-

ing
√
−1.

Remarkably, just throwing
√
−1 into the system

makes it possible to solve all polynomial equa-

tions; this is the Fundamental Theorem of Al-

gebra.
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15 Probability and Statistics

15.1 Overview

The idea that probability is something we can study,

analyze, and come to understand, is something rel-

atively new:

Fate laughs at probabilities.

Bulwer Lytton

How dare we speak of the laws of chance?

Is not chance the antithesis of all law?

Joseph Bertrand, Calcul des probabilités

While basic probability theory grew out of in-

vestigations by gamblers in the late 18th century,

a modern, rigorous foundation is fairly new:

The theory of probability as a mathe-

matical discipline can and should be de-

veloped from axioms in exactly the same

way as geometry and algebra.

Andrey Kolmogorov

All possible definitions of probability

fall short of the actual practice.

William Feller
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Besides helping us gamble if we are so inclined,

understanding probability can help avoid jumping

to conclusions:

Coincidences, in general, are great stum-

bling blocks in the way of that class of

thinkers who have been educated to know

nothing of the theory of probabilities—

that theory to which the most glorious

objects of human research are indebted

for the most glorious of illustrations.

Edgar Allen Poe, The Murders in the

Rue Morgue

Lottery: A tax on people who are bad

at math.

Anonymous

LAST NIGHT’S CHILLING LOTTERY

WINNER: 9-1-1

NY Post Headline, 12 September 2002
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Statistics is historically less-respected than prob-

ability:

There are three kinds of lies: lies,

damned lies, and statistics.

Benjamin Disraeli

USA Today has come out with a new

survey - apparently, three out of every

four people make up 75% of the popula-

tion. David Letterman

Smoking is one of the leading causes

of statistics.

Fletcher Knebel
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What’s the difference between probability and statis-

tics?

Assumption: Data Generating Mechanism (or model)

−→ Data (sample)

Probability Given complete knowledge about data

generating mechanism, make assertions about

the data.

Statistics Given the data, make inference about

the data generating mechanism.

In practice, we move back and forth between data

and model:
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15.2 Elements of Probability

Probability space: (Ω,A, P )

Three basic elements: Sample Space Ω, Collection

A of Events, Probability measure P

Sample Space:

Ω =Sample Space=set of all possible “elemen-

tary outcomes”

Events:

An event is a subset of Ω, so (usually) A =the

set of all subsets of Ω (which we often denote

by P (Ω), the “power set” of Ω)

Probability:

P : A → [0, 1] assigns values between 0 (com-

pletely improbable) and 1 (certain) to events.

Examples:

1. Roll one die, ‘obvious’ sample space is

Ω = {1, 2, 3, 4, 5, 6}
Take A =all subsets of Ω

Typical event: “Roll is even”= {2, 4, 6}
If die is ‘fair’, reasonable to take P (A) = n(A)

6

Recall: n(A) = the number of elements in A
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P (even) = P ({2, 4, 6}) = 3/6 = 1/2;

P (greater than 4) = P ({5, 6}) = 2/6 = 1/3

If die is ‘loaded’, might have some numbers more

likely than others.

One way to assign probabilities is to assign each

number i a probability pi, 1 ≤ i ≤ 6

Then let

P (A) = the sum of all the pi’s with i in A

(later we’ll see a notation for this,
∑
i∈A

pi)

EG: If we have the following assignment:

i : 1 2 3 4 5 6

pi : .1 .2 .1 .1 .1 .4

then:

P (even) = .2 + .1 + .4 = .7;

P (greater than 4) = .1 + .4 = .5;

P (Ω) = .1 + .2 + .1 + .1 + .1 + .4 = 1
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2. Throw two dice; some possible sample spaces

are:

Ω1 =

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)

(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)

(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)

(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)

(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)

(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)

or

Ω2 =

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)

(2, 2) (2, 3) (2, 4) (2, 5) (2, 6)

(3, 3) (3, 4) (3, 5) (3, 6)

(4, 4) (4, 5) (4, 6)

(5, 5) (5, 6)

(6, 6)

or

Ω3 = {2, 3, 4, . . . , 12}

What are reasonable probability assignments for

these different sample spaces?

Note: Look back at the notes from early in the

semester for a review of ordered pairs, triples,

n-tuples, and Cartesian products
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EG: Roll 4 dice, number of different throws =?

EG: Roll 4 fair dice, what is the probability of

them adding to 5?

EG: From a deck of cards, how many ways are

there to pick one card from each suit?

EG: Four cards are dealt from a deck, what is

P (all from different suits)
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3. Throw a dart at a dartboard of radius R.

Ω =all points in a circle (including interior) of

radius R

An event will be any subsetA of Ω for which “area

of A” makes sense.

P (A) =def(area of A)/(πR2)

EG: P (hit upper half of dartboard) = 1/2

EG: If ’bull’s-eye’ of dartboard is circle of radius r,

where r < R, then P (hit bull’s-eye) = πr2

πR2 =

( rR)2
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Properties of a probability measure. In the

definition of “probability space”, we impose the

following additional requirements on the prob-

ability function P :

P (∅) = 0

P (Ω) = 1

P (A∪B) = P (A) +P (B)−P (A∩B) (picture)

Definition Events A,B are disjoint if A∩B = ∅

Note: If A and B are disjoint then

P (A ∪B) = P (A) + P (B)

EG: A pair of fair dice are thrown, what is P (sum

is odd or sum is 6)?
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EG: A pair of fair dice are thrown, what is P (at

least one die shows a 4)?

Definition: two eventsA andB are independent

provided P (A ∩B) = P (A)P (B)

EG: Throw two dice, A =1st die even, B=2nd

die even; independent?

EG: Throw two dice, A =1st die< 3, B =“sum

of dice=11”; independent?

127



EG: In a class of 220, assuming that for a given

person all birth dates are equally likely (and as-

suming leap years do not exist), find the prob-

ability that at least one student in the class has

a birthday today.

Do the same for a class of 30.

For these two class sizes, find probability that two

or more students share a birthday.
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Odds ratios: If an event E has a probability

P (E) = p so the complement of E has proba-

bility P (E ′) = 1 − p, then the odds ratio (or

just the odds) in favor of E is

P (E happens)

P (E doesn’t happen)
=

p

1− p
.

Sometimes we say something like “The odds in

favor of E is p to 1− p.”

Example: 8 of the 28 players on the roster of the

Hull City Tigers Football Club (a soccer team

in the English Premier League) are English. If

you pick one of the players at random, what

are the odds that he’s English?

Answer: 8 to 20 (or 2 to 5).

Example: If you pick one of the players at ran-

dom, what are the odds against him being En-

glish?

Example: What is the probability that a ran-

domly selected player is not English?

Note: Probabilities are always between 0 and 1,

odds ratios can be any positive number.

Example: If you pick a player at random from

the roster of the Newcastle United Football
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Club (aka the Toon) the probability of his be-

ing English is 0.15. What are the odds of a

randomly selected player being English?
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A final application of probability: DNA test-

ing

Statements from the news:

“The stain on White House intern Monica Lewin-

sky’s dress was tested for DNA. Only 1 in 8

trillion people have this DNA profile.”

“The most astronomical figures involved a pair of

socks found near Simpson’s bed. Cotton said

one sock contained the DNA type of Simpson’s

slain ex-wife, Nicole Brown Simpson. Asked

how many other whites shared that DNA type,

Cotton said one in 9.7 billion. Prosecutor George

Clark noted the figure was larger than the Earth’s

population, estimated at 5.5 billion, meaning

that Ms. Simpson was literally the only per-

son whose blood could be on that sock.” (USA

Today, 10-18-96)

What do such statements mean? Can we really

use them to determine guilt from a DNA match?
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Overview of DNA testing: DNA, Loci, mark-

ers (VNTR, STR, etc), profile

Procedure: Choose sites.

Estimate probability distributions at sites based

on broad data (blood banks, etc)

Assumption: sites distant enough so measurements

are independent.

Use independence (product rule) to determine prob-

ability of any given profile.
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Example. If specify 4 sites, and each has 100

equally probable allele values, then probability

of any given profile is (1/100)4, or one in 100

million. If specify 10 sites, each with 20 equally

probably values, then probability of any given

profile is (1/20)10, or about one in 1026.

Note: The probablities for any locus are actually

“confidence intervals” (whatever those are), so

you might get a range of values, eg between

.0094 and .0114 (or between one in 68, 301, 346

and one in 152, 415, 790).
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The “Prosecutor’s Fallacy”

A DNA sample from a crime is typed, and profile

computed to have a one in one million proba-

bility. Then DNA from the defendant is typed,

and has this same profile. Consider two state-

ments:

(1) “There is only a 1 in a million chance the de-

fendant is innocent”

(2) “The probability of obtaining this DNA profile

from a randomly selected individual is 1 in a

million.”

These are not the same!

Statement (2) is correct (if our other estimates

and assumptions are correct). Statement (1) is

false.

Actual computation requires conditional proba-

bility:

P (A|B) = The probability of A given that you know B is true

Statement (1) is really the assertion that

P (Defendant innocent | blood profile matched) =

1/1000000

but we don’t yet know this conditional probability.
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Bayes Theorem If A,B are events, then

P (A|B) =
P (B|A)P (A)

P (B|A)P (A) + P (B|Ac)P (Ac)

Let:

A =Defendant is innocent

Ac =Defendant is guilty

B =Defendant’s blood matches the crime scene

profile

and let p = P (Ac) (which we don’t know, but

might have a preconception about). We know

that P (B|A) = 1/1000000, P (B|Ac) = 1, so

plug into Bayes Theorem, get:

P (A|B) =
(1/1000000)(1− p)

(1/1000000)(1− p) + p

=
1− p

1 + 999999p

this varies depending on what is the ‘prior’ prob-

ability p of guilt:
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Measures of Central tendency

Suppose we have data points x1, x2, x3, . . . , xn

There are three common ways to estimate the

“middle” of the data:

Mean: The mean (or average) of x1, . . . , xn is

x̄ =
x1 + x2 + · · · + xn

n
=

∑
i xi
n

Example:

Data: 6.2, 6.1, 8.2, 3.1, 8.7

x̄ =
6.2 + 6.1 + 8.2 + 3.1 + 8.7

5
=

32.3

5
= 6.46
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Median: The “middlemost” number:

i) If n is odd then the median=the value xi
such that half the numbers are ≥ xi,

half ≤ xi
= the kth largest number, where k = n+1

2

ii) If n is even then the median=the average of

the two numbers in the middle

iii) Normally you need to sort the data to find

the median.

Example:

Data: 6.2, 6.1, 8.2, 3.1, 8.7; sorted: 3.1, 6.1, 6.2, 8.2, 8.7

median = 6.2

Example:

Data: 6.2, 6.1, 9, 8.2, 3.1, 8.7; sorted: 3.1, 6.1, 6.2, 8.2, 8.7, 9

median =
6.2 + 8.2

2
= 7.2
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Mode: The most common data point. (Normally

not very interesting.)
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