
Chapter 10, Field Extensions

You are assumed to know Section 10.1. Everything you have learned in linear algebra
applies regardless of what the field of scalars is. In particular, the definitions of vector
space, linear independence, basis and dimension are unchanged. And the main
theorems still hold, such as existence of a basis for any vector space and the fact that the
number of elements in any basis is the same (called the dimension). Our main interest
in vector spaces will be to apply them to situations where we have one field contained in
another.

Assume that F ⊆ K are fields. Then K is an additive abelian group and we can multiply
elements of K by scalars (elements) from F satisfying the usual distributive and associative
laws. Thus K is a vector space over F . In particular, there exists a basis of elements of K
such that every element of K is a linear combination of elements of the basis with scalars
from F . We have already worked with some examples.

Q ⊆ K = Q(
√

d) for any squarefree integer d. Then K = { a + b
√

d | a, b ∈ Q }. But
this just says that K has dimension 2 over Q with a basis {1,

√
d}. Another example we

did long ago was Q( 3
√

2), a vector space over Q with basis {1, 3
√

2, 3
√

4}.

On the other hand, there are examples like Q ⊆ R where the extension is infinite
dimensional. We shall limit ourselves to finite dimensional extensions in this course. When
K is a finite dimensional extension of F , we write [K : F ] for the dimension dimF K. We
get two immediate results:

(1) [K : F ] = 1 iff K = F .
This is a consequence of the fact that a one-dimensional vector space is the same as the
field of scalars.

(2) (Theorem 10.5) Let K, L be finite dimensional extension fields of F and assume they
are isomorphic over F (that is, there is an isomorphism f : K → L with f(a) = a for all
a ∈ F ). It follows that [K : F ] = [L : F ].
This is a consequence of the fact that isomorphic vector spaces have the same dimension.

There is one new result in section 1 and we shall have great need for it.

Theorem 10.4. Let F ⊆ K ⊆ L be fields. If [K : F ] and [L : K] are finite, then [L : F ]
is finite and [L : F ] = [L : K][K : F ].

Proof. We shall prove this by actually constructing a basis for L over F . Assume that we
have bases {u1, . . . um} for K over F and {v1, . . . vn} for L over K. We shall show that the
set B = { uivj | 1 ≤ i ≤ m, 1 ≤ j ≤ n } is a basis for L over F . Since uivj = ukvl implies
uivj − ukvl = 0 is a dependence relation in L with coefficients ui,−uk ∈ K, this cannot
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happen and the set has mn distinct elements. Therefore, if we can show B is a basis, we
will have [L : F ] = mn = [L : K][K : F ].

We must show two things: B spans L with coefficients from F and the elements are
linearly independent. For the former, assume that w ∈ L. Then we can write w as a
linear combination of the vj ’s with coefficients from K, say w = a1v1 + · · · + anvn. Each
aj ∈ K, so it can be written as a linear combination of the ui’s with coefficients from F ,
say aj = b1ju1 + · · · bmjuj , j = 1, . . . , n. Substituting these expressions into the equation
for w gives w as a linear combination of elements uivj with coefficients bij ∈ F .

Now assume we have a linear combination equal to zero:
∑

aijuivj = 0, aij ∈ F .
Rearrange the terms to obtain

n∑
j=1

(
m∑

i=1

aijui

)
vj = 0.

Since the vj ’s are linearly independent, each coefficient
∑m

i=1 aijui ∈ K must be zero.
But the ui’s are linearly independent over F , hence all aij = 0. Therefore B is a linearly
independent set. �

The converse of this theorem also holds: if [L : F ] is finite, then both [K : F ] and
[L : K] are finite.

Proof. [L : K] is finite: if u1, . . . , un is a basis for L over F , then the set also spans L over
K since F ⊆ K. The elements may no longer be linearly independent, but from linear
algebra we know that any spanning set contains a basis, hence [L : K] ≤ [L : F ].

[K : F ] is finite: K is a subspace of L (as vector spaces over F ), so dimF K ≤ dimF L,
again from linear algebra facts (the proof is to start with 1K and add elements of K as
long as you can find one which is linearly independent of the set already obtained; this
process must stop in at most [L : F ] steps or you would have a linearly independent subset
of L with more elements than a basis). �

Simple Extensions.

We saw in Chapter 5 that we can always build extensions of a field F by forming the
polynomial ring in a variable x and then factoring out by the principal ideal generated
by an irreducible polynomial p(x). In fact, we saw that K = F [x]/(p(x)) is a field which
contains a root of p(x), namely the image of x in K. There is also another point of view
we can take, starting with a larger field and looking for its subfields: assume F ⊆ K are
fields and u ∈ K. We define F (u) to be the intersection of all subfields of K containing
both F and u. It is easy to see that any intersection of fields is again a field, so F (u) is a
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field extension of F called a simple extension since it is generated by a single element.
There are two possibilities:

(1) u satisfies some nonzero polynomial with coefficients in F , in which case we say u
is algebraic over F and F (u) is an algebraic extension of F .

(2) u is not the root of any nonzero polynomial over F , in which case we say u is
transcendental over F and F (u) is an transcendental extension of F .

Examples:
√

2 is algebraic over Q. π is transcendental over Q. πi is algebraic over R,
but transcendental over Q.

If u is transcendental over F , then the homomorphism F [x] → F (u) defined by x 7→ u
has kernel zero. Therefore the field of quotients F (x) is isomorphic to F (u). We will not
pursue this case in this course. Our next two theorems show that the algebraic case is
exactly the case mentioned above with a quotient ring of F [x].

Theorem 10.6. Let K be an extension field of F and u ∈ K an algebraic element over F .
There exists a unique irreducible monic polynomial p(x) ∈ F [x] with u as a root. For any
polynomial g(x) ∈ F [x], if g(u) = 0, then p(x) divides g(x). We call p(x) the minimal
polynomial of u over F .

Proof. Consider the homomorphism F [x] → K defined by evaluation of a polynomial at
u. Since the image is a subring of a field, the kernel is a prime ideal in the PID F [x], say
(p(x)). We know that p is not the zero polynomial since there is some polynomial which
u satisfies. Multiplying by a constant, we may assume that p(x) is monic. It is irreducible
because the image is an integral domain (being a subring of a field; by Theorem 5.11, the
image is actually a field). Any polynomial over F with u as a root is in the ideal, hence
is a multiple of p(x). The only irreducible polynomials in the ideal are the associates of
p(x), and only one of those, namely p(x) itself, is monic. Thus we have the uniqueness of
p(x). �

Theorem 10.7. Let K be an extension field of F and u ∈ K an algebraic element over
F with minimal polynomial p(x) of degree n. Then

(1) F (u) ∼= F [x]/(p(x));
(2) { 1, u, u2, . . . , un−1 } is a basis of the vector space F (u) over F ; and therefore
(3) [F (u) : F ] = n.

Proof. (1) was proved in the proof of Theorem 10.6 since F (u) is the image of the homo-
morphism in that proof; indeed, it clearly maps onto F [u], but since the image is a field,
it must actually be F (u) (in fact, this shows they are equal). (2) was discussed at the
end of Chapter 5. By the division algorithm we can write any f(x) ∈ F [x] in the form
f(x) = p(x)q(x) + r(x) where r(x) = 0 or has degree less than deg p(x). Thus f(x) ≡ r(x)
(mod p(x)), and is thus written in terms of the powers of x+(p(x)); the isomorphic image
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of this is u, so all elements of F (u) are written as linear combinations of powers of u. Since
deg r(x) < n = deg p(x), we only need the powers up to n − 1. �

Example 1. We consider K = Q(
√

2,
√

3). We wish to use Theorem 10.4 to show that
it has dimension 4 over Q; then it is easily seen that {1,

√
2,
√

3,
√

6} is a basis. [Q(
√

2) :
Q] = 2; since x2 − 3 has degree 2 over Q, either [K : Q(

√
2)] = 2 (and we get the desired 4

over Q, or [K : Q(
√

2)] = 1. This latter can only happen if x2 − 3 is reducible over Q(
√

2).
We know its factors over R, so it is only reducible if ±√

3 ∈ Q(
√

2). Assume
√

3 = a+b
√

2,
square both sides and you get

√
2 ∈ Q, a contradiction. Therefore K has dimension 4 over

Q.

We next look at K from the standpoint of the previous theorem. Let u =
√

2 +
√

3.
Then Q(u) is a subfield of K, and therefore has dimension 2 or 4 over Q (it isn’t 1 and it
divides 4). Find its minimal polynomial: u2 = 5 + 2

√
6; u4 − 10u2 + 25 = (u2 − 5)2 = 24,

so u satisfies x4 − 10x2 + 1. Is it irreducible? Eisenstein’s criterion does not apply. It is
reducible modulo 2 ((x + 1)4) and modulo 3 ((x2 + 1)2) and modulo 5 ((x2 + 2)(x2 − 2))...
It is irreducible modulo 13, but that would be hard to show by hand. From the mod 3
case, we see that it has no linear factors. Thus if it is reducible, we have x4 − 10x2 + 1 =
(x2 +ax+ b)(x2 + cx+d) = x4 +(a+ c)x3 +(ac+ b+d)x2 +(ad+ bc)x+ bd, which implies

a = −c

−10 = −a2 + b + d

a(d − b) = 0
bd = 1

Since bd = 1, we have b = d = ±1 so b + d = ±2 6= a2 − 10. Therefore the polynomial
is irreducible and is thus the minimal polynomial of u. Therefore, by Theorem 10.7(2),
another basis for K over Q is {1, u, u2, u3} = {1,

√
2 +

√
3, 5 + 2

√
6, 11

√
2 + 9

√
3}.

Theorem 10.7 has a corollary that we shall make great use of in the future as we deal
with isomorphisms of algebraic extensions of a field F . An immediate consequence is that
if two elements u, v in some extension field of F satisfy the same irreducible polynomial
over F , then F (u) ∼= F (v), as they are both isomorphic to the same quotient of F [x]. For
example x4 − 2 has roots 4

√
2 and i 4

√
2, so these generate isomorphic extensions of Q, even

though we normally think of one as being a subfield of R and the other as being a subfield
of C that is not contained in R. We can generalize this idea to isomorphic base fields,
rather than a fixed base field F .

Corollary 10.8. Let σ : F → E be an isomorphism of fields. Let u be algebraic over F
with minimal polynomial p(x) ∈ F [x]. Let v be algebraic over E with minimal polynomial
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σ(p(x)) ∈ E[x] [in the sense that σ : F → E has a unique extension to an isomorphism
σ : F [x] → E[x] defined by applying the isomorphism to the coefficients of polynomials].
Then σ extends to an isomorphism of fields σ̄ : F (u) → E(v) such that σ̄(u) = v.

Proof. Consider the composition F [x] ∼= E[x] → E[x]/(σp(x)) ∼= E(v). It is surjective since
each mapping is. The kernel contains p(x) since p(x) 7→ σp(x) 7→ 0. On the other hand
any element of the kernel is in σ−1(ker(E[x] → E[x]/(σp(x)))) = σ−1(σp(x)) = (p(x)).
Thus we obtain an isomorphism of F [x]/(p(x)) ∼= E(v). But F [x]/(p(x)) ∼= F (u), so we
are done. �

Algebraic extensions.

We generalize the idea of simple algebraic extensions as follows:

Definition, page 347. An extension field K of F is called an algebraic extension of
F if every element of K is algebraic over F .

This now allows algebraic extensions of infinite dimension such as Q(
√

2,
√

3,
√

5, . . . )
over Q. (At least Example 1 suggests that it should be infinite dimensional because one
would expect that none of the square roots would interact, just as they didn’t for

√
2 and√

3.)

Theorem 10.9. If n = [K : F ] < ∞, then K is an algebraic extension of F .

Proof. Let u ∈ K. The set {1, u, u2, . . . , un} has n + 1 > [K : F ] elements, so must be
linearly dependent over F . The dependence relation gives a polynomial satisfied by u. �

The contrapositive says that if K contains any transcendental element v, then the
extension is infinite dimensional. We also know this is true, since then the homomorphism
F [x] → K carrying x 7→ v has kernel zero.

An extension of a field F is called finitely generated if it has the form F (u1, u2, . . . , un),
defined as the intersection of all subfields of a field K which contains F ∪ {u1, u2, . . . , un}.
This is really just an iterated form of our earlier definition since F (u1, u2, . . . , un) =
F (u1, u2, . . . , un−1)(un), and thus the elements can be added to F one at a time. It
turns out that for algebraic extensions, being finitely generated is actually the same as
being finite dimensional.

Theorem 10.10 and converse. Let K be an algebraic extension of F . [K : F ] < ∞ if
and only if K = F (u1, u2, . . . , un) for some elements u1, u2, . . . , un ∈ K.
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Proof. ( =⇒ ) Let u1 be any element of K not in F . Then F ( F (u1). If F (u1) = K,
we are done; otherwise, choose u2 ∈ K, not in F (u1), so that F (u1) ( F (u1, u2). Continue
this process. At each step the dimension over F increases. Since [K : F ] is finite, the
process must terminate in a finite number of steps, say n, yielding K = F (u1, u2, . . . , un).

(⇐=) Now assume that K = F (u1, u2, . . . , un). For each k, the extension F (u1, u2, . . . , uk)
of F (u1, u2, . . . , uk−1) is a simple extension, hence has finite dimension by Theorem 10.7.
Iterating Theorem 10.4 yields [K : F ] = [K : F (u1, u2, . . . , un−1)][F (u1, u2, . . . , un−1) :
F (u1, u2, . . . , un−2)] · · · [F (u1) : F ], which is finite. �

It is common to refer to extensions satisfying Theorem 10.10 simply as finite exten-
sions.

A very important example of an infinite dimensional algebraic extension is the set of all
elements of C which are algebraic over Q. This is called the set of algebraic numbers.
Another example is the set of all elements of R which are algebraic over Q. This is called
the set of real algebraic numbers. But why are these fields? That is, why is the sum
and product of algebraic elements again algebraic? It is certainly not easy to see what
the minimal polynomials might be like. But our theory using vector spaces now makes
it clear that it is so: for indeed, if u, v ∈ K are algebraic over F , then F (u, v) is a finite
dimensional vector space over F ; and thus the subspace F (u − v) (or F (uv−1)) must also
be finite dimensional over F . By Theorem 10.9, it is an algebraic extension, so its element
u − v is algebraic over F . This is the essence of Corollary 10.12 in the book. Note that
this gives no information about the converse: we have no idea whether e + π is algebraic
or transcendental over Q.

Exercise 11, page 351. Let u, v ∈ K be algebraic over a subfield F with minimal
polynomials p(x) and q(x) of degrees m, n, respectively. Assume first that gcd(m, n) = 1.
We claim that [F (u, v) : F ] = mn. We know that [F (u, v) : F ] = [F (u, v) : F (u)][F (u) : F ]
by Theorem 10.4, hence m | [F (u, v) : F ]. Similarly, n | [F (u, v) : F ], so mn | [F (u, v) : F ]
because m and n are relatively prime. On the other hand, [F (u, v) : F (u)] ≤ n since
the minimal polynomial for v over F (u) can have no greater degree than the minimal
polynomial q(x) over F . (In fact, the minimal polynomial over F (u) must divide q(x)
by Theorem 10.6.) Therefore [F (u, v) : F ] = [F (u, v) : F (u)][F (u) : F ] ≤ mn. Since
mn | [F (u, v) : F ], they must be equal.

This sometimes holds if gcd(m, n) 6= 1 as in our Example 1 with
√

2 and
√

3. But it
may also fail. A trivial example is given by taking u = v. A nontrivial example comes
from Q(

√
2, 4

√
2) whose degree over Q is only 4 since it equals Q( 4

√
2).

An example using this result is that [Q(
√

2, 3
√

2) : Q] = 6 since gcd(2, 3) = 1.

Exercise 13, page 351, is closely related to Exercise 11. Let m = deg p(x) and n =
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deg q(x). We saw above that [F (u, v) : F ] = mn = [F (u, v) : F (u)][F (u) : F ]. This implies
that [F (u, v) : F (u)] = n, which equals the degree of the minimal polynomial of v over
F (u) by Theorem 10.7. By Theorem 10.6, this polynomial divides q(x) (since q(v) = 0 in
F (u)), and therefore must be q(x) since they have the same degree. That is, q(x) remains
irreducible over F (u). In our specific example, this says x3 − 2 is irreducible over Q(

√
2).

Splitting fields.

Let F ⊆ K be fields and let f(x) ∈ F [x]. We say that f(x) splits over K if it factors
into linear factors in K[x]. If deg f(x) = n, this means that f(x) has n roots in K counting
multiplicities (i.e., for f(x) = (x + 1)2, we count the root 1 twice). Given a polynomial
f(x) ∈ F [x], we are interested in constructing the smallest field K containing F and all
the roots of f(x). We call this field the splitting field of f(x) over F . Note that if
f(x) = c(x − u1) · · · (x − un) in K[x] and K is the splitting field, then K = F (u1, . . . , un)
since it is generated by F together with the roots of f(x).

Examples: F is the splitting field for every linear polynomial over F .
C is the splitting field for any irreducible quadratic polynomial over R. In particular, this
is true for the polynomial x2 + 1.
K = Q(

√
2,
√

3) is the splitting field for x4 − 10x2 + 1 over Q by Example 1. K is also the
splitting field for x2 − 3 over Q(

√
2). The polynomial does not need to be irreducible. K

is the splitting field for (x2 − 2)(x2 − 3)(x + 1) over Q as well. However, our main interest
is in irreducible polynomials since then we know more about the dimension of K over F .

Our immediate goal is to show that splitting fields always exist and are unique up to
isomorphism. We will then go on to see that they have much stronger and more surprising
properties.

Theorem 10.13. Let F be a field and let f(x) ∈ F [x] be a polynomial of degree n > 0.
Then there exists a splitting field K of f(x) over F with [K : F ] ≤ n!.

Proof. We construct K using induction on n. If n = 1, then K = F works since the root of
f(x) already lies in F . Assume that the theorem holds for polynomials of degree n−1 and
n ≥ 2. Since F [x] is a UFD, we can find a monic, irreducible factor p(x) of f(x) in F [x].
We can construct the field F [x]/(p(x)) which has a root u of p(x) (Theorem 5.11). Call
this field F (u). Its dimension over F is equal to deg p(x) ≤ deg f(x) = n. Over the field
F (u), we factor f(x) = (x− u)g(x) for some g(x) ∈ F (u)[x]. By the induction hypothesis,
there exists a splitting field K for g(x) over F (u) with [K : F (u)] ≤ (n − 1)!. But then K
has all the roots of f(x) and is generated by those roots, hence is a splitting field of f(x)
over F . Furthermore, [K : F ] = [K : F (u)][F (u) : F ] ≤ n!. �

As you might guess, splitting fields for a given polynomial are all isomorphic. In fact,
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they are unique if you are working inside some large enough field to begin with; that is, if
you want the splitting field of f(x) ∈ Q[x], there is a unique choice inside C. But we do
not always have a big field available, as was the situation when we constructed a splitting
field in the previous theorem. So in general, the best we can ask for is isomorphism. In an
abstract sense, with the base field Q, we can’t tell

√
2 from −√

2; they are simply the two
roots of the irreducible polynomial x2 − 2. Of course, they have precise meanings inside a
bigger field like R.

Theorem 10.14. Let σ : F → E be a field isomorphism, f(x) ∈ F [x] with deg f = n > 0,
and σ(f(x)) the corresponding polynomial in E[x]. If K is a splitting field of f(x) over F
and L is a splitting field of σ(f(x)) over E, then σ extends to an isomorphism K ∼= L.

Proof. Again we induct on n. If n = 1, then K = F and L = E so σ is the required
isomorphism. Now assume that n ≥ 2 and the theorem holds for polynomials of degree
n − 1. Let p(x) be a monic irreducible polynomial which divides f(x) in F [x]. From the
isomorphism F [x] ∼= E[x], the polynomial σp(x) is a monic irreducible divisor of σf(x). Let
u be a root of p(x) in K and v a root of σp(x) in L (since these polynomials must split in the
respective fields). Corollary 10.8 says σ extends to an isomorphism F (u) ∼= E(v) carrying u
to v. Now factor f(x) = (x−u)g(x) over F (u), and correspondingly, σf(x) = (x−v)σg(x)
over E(v). Apply the induction hypothesis to the polynomial g(x) ∈ F (u)[x] of degree
n − 1 which splits in K. We obtain an isomorphism K ∼= L extending the isomorphism
F (u) ∼= E(v) which, in turn, extends σ. �

Note that an explicit isomorphism can be constructed step by step as in the proof. For
example, if f(x) = (x2−2)(x2−3) ∈ Q[x], with F = E = Q, then we first take an irreducible
factor p(x) = x2 − 2 and construct an isomorphism F (u) = Q(

√
2) → E(v) = Q(−√

2)
taking u =

√
2 to v = −√

2. Note that I have deg p choices for where to send u. Then
I factor f(x) = (x − √

2)(x3 +
√

2x2 − 3x − 3
√

2) and choose an irreducible factor of
the second factor, like x2 − 3, and repeat the process once more to get an isomorphism
Q(

√
2,
√

3) ∼= Q(−√
2,−√

3) (if I happen to make that choice for u and v the second time).
Note in particular that it did not require n = 4 steps in this case—sometimes you get
extra roots when you adjoin one of them, but not always. Of course, you always do for
quadratic polynomials.

Example 2. Let’s find the splitting field of x3 − 2 over Q. It certainly contains u1 =
3
√

2. It also contains the other two cube roots of 2 in C, namely u2 = 3
√

2−1+
√

3i
2

and
u3 = 3

√
2−1−√

3i
2 . So the splitting field is Q(u1, u2, u3). What is its dimension over Q?

Notice that the two complex cube roots of 1, −1±√
3i

2 are roots of the equation x3 − 1 =
(x − 1)(x2 + x + 1), so both have the minimal polynomial x2 + x + 1. Thus the splitting
field can also be written as Q( 3

√
2, ω), where ω = −1+

√
3i

2
. Since these two elements have
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minimal polynomials of the relatively prime degrees 3 and 2, respectively, the dimension
over Q is the product, 6, by Exercise 13 done earlier.

The most important definition for studying Galois theory is the following:

Definition. An algebraic extension K of F is normal if whenever an irreducible polyno-
mial over F has one root in K, then it splits in K.

This would seem to be an extremely strong condition since it refers to all polynomials,
but in fact it applies to all splitting fields! That is, as soon as a field K is a splitting field
for one polynomial over F , it is also a splitting field for any irreducible polynomial over F
with a single root in K.

Theorem 10.15. K is a splitting field for some polynomial over F if and only if K is a
finite dimensional normal extension of F .

Proof. ( =⇒ ) We have K = F (u1, . . . un) where u1, . . . , un are the roots of some polyno-
mial f(x) ∈ F [x]. By Theorem 10.10, [K : F ] < ∞. To show that K is a normal extension
of F , let p(x) be an irreducible polynomial over F with a root v ∈ K and let L be the
splitting field of p(x) over K. Our goal is to show that L ⊆ K, or more specifically, every
root w of p(x) lies in K. Since p(x) is irreducible, Corollary 10.8 implies that F (v) ∼= F (w)
via an isomorphism which fixes F . Now K(w) = F (w)(u1, . . . , un), hence is a splitting
field for f(x) over F (w). Since K is a splitting field for f(x) over F , it is also a splitting
field for f(x) over F (v) ⊆ K. By Theorem 10.14, the isomorphism F (v) ∼= F (w) extends
to an isomorphism of splitting fields for f(x): K

∼−→ K(w) taking v 7→ w and fixing the
subfield F . But then these two vector spaces over F have the same dimension, and since
one contains the other, they are equal. Therefore w ∈ K for every root w of p(x) as desired.

(⇐=) Since K is a finite dimensional extension of F , it can be written K = F (u1, . . . , un)
with each ui satisfying some minimal polynomial pi(x). Each pi(x) splits in K since it
is normal, and therefore f(x) = p1(x) · · ·pn(x) splits over K. It follows that K is the
splitting field for f(x) over F . �

Some of this theory can be extended to infinite algebraic extensions. One can construct
an algebraic extension F̄ of a field F in which every polynomial over F splits. Theorem
10.14 can be extended to show that such a field is unique up to isomorphism; F̄ is called
the algebraic closure of F . An example is Q̄, the field of all algebraic numbers, which
is the algebraic closure of Q. Any field, for which every polynomial over it splits over the
field itself, is called algebraically closed. Another algebraically closed field is C, a fact
usually proved using complex analysis. The algebra proofs require the intermediate value
theorem for R plus some Galois theory (Chapter 11).
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Exercise 13, page 358: A splitting field for x6 +x3 +1 over Q is given by Q(ρ, 3
√

ρ, 3
√

ρ̄)
because x6 + x3 + 1 = (x3 − ρ)(x3 − ρ̄), where ρ = −1+

√
3i

2
is a cube root of 1.

Exercise 16, page 358: A splitting field for x3 + x + 1 over Z2 is given by Z2(ρ) where
ρ is a root of x3 +x+1 because this gives a field of 8 elements {0, 1, ρ, ρ+1, ρ2, ρ2 +1, ρ2 +
ρ, ρ2 + ρ + 1} over which x3 + x + 1 = (x + ρ)(x + ρ2)(x + ρ2 + ρ). This field is commonly
denoted by F8.

Separability.

We say a polynomial of degree n is separable if it has n distinct roots in some splitting
field. Thus x2 − 1 is separable over R, but (x2 + 1)2 is not since i is a multiple root in the
splitting field C. Our real concern is when irreducible polynomials are separable, and the
answer is pretty much always in the cases we will encounter in this course. Our interest in
this is that it is a needed condition for our later work; inseparability leads to considerably
different results. Consequently, we define an element of an extension field K of F to be
separable over F if it is algebraic and its minimal polynomial is separable. And we define
an extension field K to be separable over F if every element of K is separable over F .

The main test for separability uses the derivative. Of course, we do not have the usual
limits of calculus available, so we define the derivative formally:

For f(x) = a0 + a1x + · · ·+ anxn, the derivative is f ′(x) = a1 + 2a2x + · · ·+ nanxn−1.

The usual sum, product and chain rule formulas hold for polynomials; this can be proved
using this definition, but the underlying reason is that they hold over R and they are
purely formal formulas, so they must also hold over any field F . Note that there are some
differences from the usual theorems over R. For example, over Zp, the derivative of xp + 1
is zero!

Lemma 10.16 and converse. The polynomial f(x) ∈ F [x] is separable iff gcd(f, f ′) = 1.

Proof. Let K be a splitting field for f(x) and let a ∈ K be any root of f(x). Then
f(x) = (x − a)mg(x) with m ≥ 1, g(a) 6= 0. Now f ′(x) = m(x − a)m−1g(x) + (x −
a)mg′(x) = (x − a)m−1[mg(x) + (x − a)g′(x)], where the second factor, evaluated at a,
gives mg(a) + 0 = 0 ⇐⇒ m = 0 ∈ K. Now if f(x) is separable then every power m is 1,
so f ′(a) 6= 0 and x − a is not a factor of f ′(x). Thus none of the factors of f(x) divides
f ′(x) and they must be relatively prime. Conversely, if f(x) is not separable, then some
m > 1 and f ′(a) = 0, hence x − a is a common factor of f(x) and f ′(x), so they are not
relatively prime. �

Recall that we discussed the characteristic of a ring R last semester. For a ring with
1R, it was seen that it is the number n ≥ 0 such that the homomorphism Z → R defined
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by f(k) = k1R has kernel (n). When R = K is a field, the image of Z must be an integral
domain, so n is a prime or 0. Thus every field has characteristic either 0 (in which case it
contains a copy of the rational numbers) or a prime p (in which case it contains a copy of
the finite field Zp. The field Q or Zp is called the prime subfield of K.

Theorem 10.17. Every irreducible polynomial over a field of characteristic zero is sepa-
rable, and hence every algebraic extension is separable.

Proof. Let p(x) = anxn + · · ·+a0, an 6= 0 be irreducible. Then p′(x) = nanxn−1 = · · ·+a1

has degree n − 1, so is nonzero and has no factor in common with p(x) since p(x) is
irreducible. Thus gcd(p, p′) = 1 and p(x) is separable. �

What goes wrong in characteristic p? For finite fields nothing goes wrong. The simplest
example of a nonseparable extension is given in Exercise 15, page 363. This works for
any p as well as 2. Let F = Zp(t) be the field of quotients of the ring of polynomials in
one variable over Zp. Consider the polynomial f(x) = xp − t. t is an irreducible element
of Zp[t], so this polynomial is irreducible by Eisenstein’s criterion. But f ′(x) = 0, so
gcd(f, f ′) = f and f(x) is not separable. In fact, what happens in a splitting field, is that
if u is any root, then f(x) = (x − u)p; that is, u is the only root and it has multiplicity p.

Finite Fields.

Like finite groups, these have lots of applications and are a major part of a course in
applied algebra. They are used in combinatorics, coding theory, cryptography, projective
geometry, etc. In order to make this chapter independent of ring theory, the author has
done a lot of ring theory at the beginning of the section—which we skip. Note that a finite
field K is also a finite abelian group (under addition) and we again use the word order for
the number of elements in it. Also, K can be thought of as a vector space over its prime
subfield Zp of some dimension n. Thus, as a vector space, K ∼= Zn

p and has pn elements.
This proves

Theorem 10.23. If K is a finite field of characteristic p, then |K| = pn where [K : Zp] =
n. �

Arithmetic in characteristic p

(a + b)pn

= apn

+ bpn

.

Proof. This is just the binomial theorem plus a fact about binomial coefficients. Use
induction on n. If n = 1, then it follows from the fact that all the other coefficients in the
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binomial expansion have the form
(

p

k

)
=

p!
k!(p − k)!

for 0 < k < p; thus the denominator

is not divisible by p, but the numerator is, and so the coefficient is 0 in Zp. Now do the
obvious inductive step:

(a + b)pn+1
= ((a + b)pn

)p = (apn

+ bpn

)p = apn+1
+ bpn+1

. �

Theorem 10.25 (Characterization of Finite Fields). For each prime p and integer
n ≥ 1, there is a unique (up to isomorphism) field of order pn. It is the splitting field of
xpn − x over Zp.

Proof. We know that xpn − x has some splitting field K over Zp and it is unique up
to isomorphism. Since d

dxxpn − x = −1, it is relatively prime to xpn − x, which thus
has no repeated roots; so xpn − x has precisely pn different roots c and they all satisfy
cpn

= c. Let S be the set of roots; for a, b ∈ S, we have (ab)pn

= apn

bpn

= ab, so ab ∈ S,
(a−1)pn

= (apn

)−1 = a−1, so a−1 ∈ S, and (a − b)pn

= apn − bpn

= a − b, so a − b ∈ S. It
follows that S is a field, and is certainly generated by the roots of xpn −x, so S = K. Thus
there exists a field with pn elements and it is the splitting field of xpn −x over Zp. Now let
L be any other field with pn elements. It’s multiplicative group of nonzero elements L∗ has
pn−1 elements. By Lagrange’s Theorem, any nonzero element of c ∈ L satisfies cpn−1 = 1,
so c is a root of xpn−1 − 1. Therefore every element of L satisfies x(xpn−1 − 1) = xpn − x;
it follows that L is also a splitting field for xpn − x, so is isomorphic to K. �

We denote the field of order pn by Fpn or GF (pn) and call it the Galois field of order
pn. Note that we have actually shown that

xpn − x =
∏

a∈Fpn

(x − a).

While xpn − x is certainly not irreducible, we can use group theory to show that there
always are irreducible polynomials of order pn over Zp.

Theorem 10.28. Fpn is a simple extension of Zp. There exists an irreducible polynomial
of degree n over Zp.

Proof. By Theorem 7.15, the multiplicative group of nonzero elements of Fpn is cyclic. If
u is a generator of this group, then Fpn = {0, u, u2, . . . , upn−1} = Zp(u). The minimal
polynomial of u is irreducible over Zp and has degree [Fpn : Zp] = n. �

When is K = Fpm contained in L = Fpn? If K ⊆ L, then [L : K]m = [L : K][K : Zp] =
[L : Zp] = n, so m | n. On the other hand, if m | n, say n = mr, then cpm

= c =⇒ cpn

=
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cpmr

= (cpm

)pm(r−1)
= cpm(r−1)

= · · · = c, so any element of K is in L because it satisfies
the appropriate polynomial.


