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General Comments:

• Some of you in the first problem tried showing that an arbitrary subsequence will converge, but this
is not necessarily true. Knowing x is an accumulation point gives you the tools to CONSTRUCT A
SUBSEQUENCE (or SHOW THE EXISTENCE OF A SUBSEQUENCE) that converges to x.

• For the second problem, I think a lot of you tried to use the direction of Theorem 1.14 stating, “If
each of a sequence’s subsequences converges, then the sequence converges.” By construction, though,
you have only that TWO of the subsequences of

{
zn
}∞
n=1

converge, not ALL of the subsequences.

What about the subsequences
{
z3n
}∞
n=1

or
{
zn2

}∞
n=1

? So you cannot immediately use Theorem 1.14

to conclude that
{
zn
}∞
n=1

converges to x0. This cost almost everyone a lot of points because the
improper use of the theorem caused you to not be able to do the exercise at all.

• For the last problem I saw a clever solution utilizing the theorem stating that every real number x is
an accumulation point of a set of rational numbers, then using exercise 35 to show the existence of a
subsequence of this set of rational numbers that converges to x.

1. (Chapter 1, exercise 35)

Suppose x is an accumulation point of
{
an : n ∈ N

}
. Show that there is a subsequence of

{
an
}∞
n=1

that
converges to x

Proof. Let x be an accumulation point of
{
an : n ∈ N

}
. Consider the neighborhood of x given by(

x− 1
k , x+ 1

k

)
where k ∈ N. By the lemma on page 39, for each k ∈ N there is an element ank

6= x in{
an : n ∈ N

}
such that ank

∈
(
x− 1

k , x+ 1
k

)
. It follows that the subsequence

{
ank

}∞
k=1

converges to x

since given ε > 0 we can choose N > 1
ε and have

|ank
− x| < 1

k
≤ 1

N
< ε

for k ≥ N . �
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2. (Chapter 1, exercise 39)

Suppose
{
xn
}∞
n=1

converges to x0 and
{
yn
}∞
n=1

converges to x0. Define a sequence
{
zn
}∞
n=1

as follows:

z2n = xn and z2n−1 = yn. Prove that
{
zn
}∞
n=1

converges to x0.

Proof. We will first show that
{
zn
}∞
n=1

is Cauchy; that is, given ε > 0, we will show that there exists N ∈ N
such that |zn − zm| < ε for all n,m ≥ N . Note, the terms of

{
zn
}∞
n=1

consist exactly of terms of
{
xn
}∞
n=1

and
{
yn
}∞
n=1

. Hence, our options for |zn − zm| are as follows

|zn − zm| =


|xk − x`|
|yk − y`|
|xk − y`|

for some k, ` ∈ N. Note, since
{
xn
}∞
n=1

and
{
yn
}∞
n=1

converge, these sequences are Cauchy (Theorem 1.3).

Thus, it suffices to show |xk − y`| < ε.

Let ε > 0 be given. Since
{
xn
}∞
n=1

and
{
yn
}∞
n=1

converge to x0, there exists N1 ∈ N such that

|xk−x0| < ε
2 for all k ≥ N1, and N2 ∈ N such that |y`−x0| < ε

2 for all ` ≥ N2. Choose N = max{N1, N2}.
Then for all k, ` ≥ N we have

|xk − y`| = |xk − x0 + x0 − y`|
≤ |xk − x0|+ |x0 − y`| by the triangle inequality

= |xk − x0|+ |y` − x0|

<
ε

2
+
ε

2
= ε.

It follows by definition that
{
zn
}∞
n=1

is Cauchy. By Theorem 1.7, we then know that this sequence

converges. Finally, by Theorem 1.14, we have that
{
zn
}∞
n=1

must converge to the same limit as all of its
subsequences, and hence must converge to x0 as desired. �

*This could have also been done without any use of information about subsequences, but just
with the definition of convergence and proper indexing. It just seems more fumbly and a bit
awkward to me:
Let ε > 0 be given. Since z2n = xn and

{
xn
}∞
n=1

converges to x0, we know there is an N1 ∈ N
such that |z2n − x0| = |xn − x0| < ε for n ≥ N1. Similarly, since z2n−1 = yn and

{
yn
}∞
n=1

converges to x0, we know there is an N2 ∈ N such that |z2n−1 − x0| < ε for n ≥ N2. Thus, set
N = max{2N1, 2N2 − 1}. Then for all n ≥ N , we have n ≥ 2N1 AND n ≥ 2N2 − 1 which implies

|zn − x0| ≤ |xN1
− x0| < ε because xN1

= z2N1
and we are beyond z2N1

in the sequence

AND

|zn − x0| ≤ |yN2 − x0| < ε because yN2 = z2N2−1 and we are beyond z2N2−1 in the sequence.

Since the terms of
{
zn
}∞
n=1

comprise exactly of the terms of
{
xn
}∞
n=1

and
{
yn
}∞
n=1

we are done.

*There is a subtle difference here from some of the arguments submitted in homework showing

|z2n − x0| < ε and |Z2n−1 − x0| < ε

when n ≥ max{N1, N2}. Just taking the max of the N ′s that work for the xn and yn sequences
does not guarantee that you will be far out enough in the sequence of zn to be within an epsilon
neighborhood of x0.
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3. (Chapter 1, exercise 45)
Show that if x is any real number, there is a sequence of rational numbers converging to x.

Proof. Let x ∈ R. By Theorem 0.22, we know there exists an ∈ Q such that x − 1
n < an < x + 1

n , where

n ∈ N. Note, this is equivalent to |an − x| < 1
n . Thus, given ε > 0, choose N > 1

ε . Then for all n ≥ N we
have

|an − x| <
1

n
≤ 1

N
< ε,

showing that the sequence
{
an
}∞
n=1

of rational numbers converges to x as was to be shown. �

*Note, this is not a “well-defined” sequence in the sense that you do not know what rational
number an I am choosing in the interval

(
x− 1

n , x+ 1
n

)
, but that doesn’t matter because whatever

the choice is, I am still getting closer and closer to x via rational numbers. It is actually well-
defined as a function from N to Q ⊂ R because for each n ∈ N I am only choosing one an ∈ Q.


