General Comments:

- Some of you in the first problem tried showing that an arbitrary subsequence will converge, but this is not necessarily true. Knowing x is an accumulation point gives you the tools to CONSTRUCT A SUBSEQUENCE (or SHOW THE EXISTENCE OF A SUBSEQUENCE) that converges to x .
- For the second problem, I think a lot of you tried to use the direction of Theorem 1.14 stating, "If each of a sequence's subsequences converges, then the sequence converges." By construction, though, you have only that TWO of the subsequences of $\{z_n\}_{n=1}^{\infty}$ converge, not ALL of the subsequences. What about the subsequences $\{z_{3n}\}_{n=1}^{\infty}$ or $\{z_{n^2}\}_{n=1}^{\infty}$? So you cannot immediately use Theorem 1.14 to conclude that $\{z_n\}_{n=1}^{\infty}$ converges to x_0 . This cost almost everyone a lot of points because the improper use of the theorem caused you to not be able to do the exercise at all.
- For the last problem I saw a clever solution utilizing the theorem stating that every real number x is an accumulation point of a set of rational numbers, then using exercise 35 to show the existence of a subsequence of this set of rational numbers that converges to x .

1. (Chapter 1, exercise 35)

Suppose x is an accumulation point of $\{a_n : n \in \mathbb{N}\}\$. Show that there is a subsequence of $\{a_n\}_{n=1}^{\infty}$ that converges to \boldsymbol{x}

Proof. Let x be an accumulation point of $\{a_n : n \in \mathbb{N}\}\$. Consider the neighborhood of x given by $(x - \frac{1}{k}, x + \frac{1}{k})$ where $k \in \mathbb{N}$. By the lemma on page 39, for each $k \in \mathbb{N}$ there is an element $a_{n_k} \neq x$ in $\{a_n : n \in \mathbb{N}\}\$ such that $a_{n_k} \in (x - \frac{1}{k}, x + \frac{1}{k})$. It follows that the subsequence $\{a_{n_k}\}_{k=1}^\infty$ converges to x since given $\epsilon > 0$ we can choose $N > \frac{1}{\epsilon}$ and have

$$
|a_{n_k} - x| < \frac{1}{k} \le \frac{1}{N} < \epsilon
$$
\nfor $k \ge N$.

\n \Box

2. (Chapter 1, exercise 39)

Suppose $\{x_n\}_{n=1}^{\infty}$ converges to x_0 and $\{y_n\}_{n=1}^{\infty}$ converges to x_0 . Define a sequence $\{z_n\}_{n=1}^{\infty}$ as follows: $z_{2n} = x_n$ and $z_{2n-1} = y_n$. Prove that $\left\{z_n\right\}_{n=1}^{\infty}$ converges to x_0 .

Proof. We will first show that $\{z_n\}_{n=1}^{\infty}$ is Cauchy; that is, given $\epsilon > 0$, we will show that there exists $N \in \mathbb{N}$ such that $|z_n - z_m| < \epsilon$ for all $n, m \ge N$. Note, the terms of $\{z_n\}_{n=1}^{\infty}$ consist exactly of terms of $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$. Hence, our options for $|z_n - z_m|$ are as follows

$$
|z_n - z_m| = \begin{cases} |x_k - x_\ell| \\ |y_k - y_\ell| \\ |x_k - y_\ell| \end{cases}
$$

for some $k, \ell \in \mathbb{N}$. Note, since $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ converge, these sequences are Cauchy (Theorem 1.3). Thus, it suffices to show $|x_k - y_\ell| < \epsilon$.

Let $\epsilon > 0$ be given. Since $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ converge to x_0 , there exists $N_1 \in \mathbb{N}$ such that $|x_k - x_0| < \frac{\epsilon}{2}$ for all $k \ge N_1$, and $N_2 \in \mathbb{N}$ such that $|y_\ell - x_0| < \frac{\epsilon}{2}$ for all $\ell \ge N_2$. Choose $N = \max\{N_1, N_2\}$. Then for all $k, \ell \geq N$ we have

$$
|x_k - y_\ell| = |x_k - x_0 + x_0 - y_\ell|
$$

\n
$$
\le |x_k - x_0| + |x_0 - y_\ell|
$$
 by the triangle inequality
\n
$$
= |x_k - x_0| + |y_\ell - x_0|
$$

\n
$$
< \frac{\epsilon}{2} + \frac{\epsilon}{2}
$$

\n
$$
= \epsilon.
$$

It follows by definition that $\left\{z_n\right\}_{n=1}^{\infty}$ is Cauchy. By Theorem 1.7, we then know that this sequence converges. Finally, by Theorem 1.14, we have that $\{z_n\}_{n=1}^{\infty}$ must converge to the same limit as all of its subsequences, and hence must converge to x_0 as desired. \square

*This could have also been done without any use of information about subsequences, but just with the definition of convergence and proper indexing. It just seems more fumbly and a bit awkward to me:

Let $\epsilon > 0$ be given. Since $z_{2n} = x_n$ and $\{x_n\}_{n=1}^{\infty}$ converges to x_0 , we know there is an $N_1 \in \mathbb{N}$ such that $|z_{2n} - x_0| = |x_n - x_0| < \epsilon$ for $n \ge N_1$. Similarly, since $z_{2n-1} = y_n$ and $\{y_n\}_{n=1}^{\infty}$ converges to x_0 , we know there is an $N_2 \in \mathbb{N}$ such that $|z_{2n-1} - x_0| < \epsilon$ for $n \ge N_2$. Thus, set $N = \max\{2N_1, 2N_2 - 1\}$. Then for all $n \ge N$, we have $n \ge 2N_1$ AND $n \ge 2N_2 - 1$ which implies

 $|z_n - x_0| \le |x_{N_1} - x_0| < \epsilon$ because $x_{N_1} = z_{2N_1}$ and we are beyond z_{2N_1} in the sequence AND

 $|z_n - x_0| \le |y_{N_2} - x_0| < \epsilon$ because $y_{N_2} = z_{2N_2-1}$ and we are beyond z_{2N_2-1} in the sequence. Since the terms of $\{z_n\}_{n=1}^{\infty}$ comprise exactly of the terms of $\{x_n\}_{n=1}^{\infty}$ and $\{y_n\}_{n=1}^{\infty}$ we are done.

*There is a subtle difference here from some of the arguments submitted in homework showing

 $|z_{2n} - x_0| < \epsilon$ and $|Z_{2n-1} - x_0| < \epsilon$

when $n \ge \max\{N_1, N_2\}$. Just taking the max of the N's that work for the x_n and y_n sequences does not guarantee that you will be far out enough in the sequence of z_n to be within an epsilon neighborhood of x_0 .

Show that if x is any real number, there is a sequence of rational numbers converging to x .

Proof. Let $x \in \mathbb{R}$. By Theorem 0.22, we know there exists $a_n \in \mathbb{Q}$ such that $x - \frac{1}{n} < a_n < x + \frac{1}{n}$, where $n \in \mathbb{N}$. Note, this is equivalent to $|a_n - x| < \frac{1}{n}$. Thus, given $\epsilon > 0$, choose $N > \frac{1}{\epsilon}$. Then for all $n \ge N$ we have

$$
|a_n-x|<\frac{1}{n}\leq \frac{1}{N}<\epsilon,
$$

showing that the sequence $\{a_n\}_{n=1}^{\infty}$ of rational numbers converges to x as was to be shown.

*Note, this is not a "well-defined" sequence in the sense that you do not know what rational number a_n I am choosing in the interval $\left(x - \frac{1}{n}, x + \frac{1}{n}\right)$, but that doesn't matter because whatever the choice is, I am still getting closer and closer to x via rational numbers. It is actually welldefined as a function from $\mathbb N$ to $\mathbb Q \subset \mathbb R$ because for each $n \in \mathbb N$ I am only choosing one $a_n \in \mathbb Q$.