E. S. Gawlik & M. Neunteufel.
Finite Element Approximation of the Einstein Tensor.
[pdf | arxiv]
E. S. Gawlik & M. Neunteufel.
Finite Element Approximation of Scalar Curvature in Arbitrary Dimension.
[pdf | arxiv]
E. S. Gawlik.
Iterations for the Unitary Sign Decomposition and the Unitary Eigendecomposition.
[pdf | arxiv]
E. S. Gawlik & Y. Nakatsukasa.
Zolotarev's Fifth and Sixth Problems.
[pdf | arxiv]
Journal Articles
E. S. Gawlik & F. Gay-Balmaz.
Variational and Thermodynamically Consistent Finite Element Discretization for Heat Conducting Viscous Fluids.
Mathematical Models and Methods in Applied Sciences, to appear.
[pdf]
Y. Berchenko-Kogan & E. S. Gawlik.
Finite Element Approximation of the Levi-Civita Connection and its Curvature in Two Dimensions. Foundations of Computational Mathematics, to appear.
[pdf | doi]
E. S. Gawlik & F. Gay-Balmaz.
A Finite Element Method for MHD that Preserves Energy, Cross-Helicity, Magnetic Helicity, Incompressibility, and div B = 0.
Journal of Computational Physics, 450, 110847 (2022).
[pdf | doi]
E. S. Gawlik, M. J. Holst, & M. W. Licht.
Local Finite Element Approximation of Sobolev Differential Forms.
ESAIM: Mathematical Modelling and Numerical Analysis, 55(5), 2075-2099 (2021).
[pdf | doi]
E. S. Gawlik & F. Gay-Balmaz.
A Structure-Preserving Finite Element Method for Compressible Ideal and Resistive MHD.
Journal of Plasma Physics, 87(5), 835870501 (2021).
[pdf | doi]
E. S. Gawlik & Y. Nakatsukasa.
Approximating the pth Root by Composite Rational Functions.
Journal of Approximation Theory, 266, 105577 (2021).
[pdf | doi]
E. S. Gawlik & F. Gay-Balmaz.
A Variational Finite Element Discretization of Compressible Flow.
Foundations of Computational Mathematics, 21, 961-1001 (2021).
[pdf | doi]
E. S. Gawlik.
Rational Minimax Iterations for Computing the Matrix pth Root.
Constructive Approximation, 54, 1-34 (2021).
[pdf | doi]
E. S. Gawlik.
High-Order Approximation of Gaussian Curvature with Regge Finite Elements.
SIAM Journal on Numerical Analysis, 58(3), 1801-1821 (2020).
[pdf | doi]
E. S. Gawlik & F. Gay-Balmaz.
A Conservative Finite Element Method for the Incompressible Euler Equations with Variable Density.
Journal of Computational Physics, 412, 109439 (2020).
[pdf | doi]
E. S. Gawlik.
Zolotarev Iterations for the Matrix Square Root.
SIAM Journal on Matrix Analysis and Applications, 40(2), 696-719 (2019).
[pdf | doi]
E. S. Gawlik, Y. Nakatsukasa, & B. D. Sutton.
A Backward Stable Algorithm for Computing the CS Decomposition via the Polar Decomposition.
SIAM Journal on Matrix Analysis and Applications 39(3), 1448-1469 (2018).
[pdf | doi]
E. S. Gawlik & M. Leok.
High-Order Retractions on Matrix Manifolds Using Projected Polynomials.
SIAM Journal on Matrix Analysis and Applications 39(2), 801-828 (2018).
[pdf | doi]
E. S. Gawlik & M. Leok.
Embedding-Based Interpolation on the Special Orthogonal Group.
SIAM Journal on Scientific Computing 40(2), A721-A746 (2018).
[pdf
| doi]
E. S. Gawlik & M. Leok.
Interpolation on Symmetric Spaces via the Generalized Polar Decomposition.
Foundations of Computational Mathematics 18(3), 757-788 (2018).
[pdf
| doi]
E. S. Gawlik & M. Leok.
Iterative Computation of the Fréchet Derivative of the Polar Decomposition.
SIAM Journal on Matrix Analysis and Applications 38(4), 1354-1379 (2017).
[pdf
| doi]
E. S. Gawlik & A. J. Lew.
Unified Analysis of Finite Element Methods for Problems with
Moving Boundaries.
SIAM Journal on Numerical Analysis 53(6), 2822-2846 (2016).
[pdf
| doi]
E. S. Gawlik, H. Kabaria, & A. J. Lew.
High-Order Methods for Low Reynolds Number Flows around Moving
Obstacles Based on Universal Meshes.
International Journal for Numerical Methods in Engineering 104(7), 513-538 (2015).
[pdf
| doi]
E. S. Gawlik & A. J. Lew.
Supercloseness of Orthogonal Projections onto Nearby Finite
Element Spaces.
ESAIM: Mathematical Modelling and Numerical Analysis 49(2), 559-576 (2015).
[pdf
| doi]
E. S. Gawlik & A. J. Lew.
High-Order Finite Element Methods for Moving Boundary Problems with Prescribed Boundary Evolution.
Computer Methods in Applied Mechanics and Engineering 278, 314-346
(2014).
[pdf
| doi]
M. Desbrun, E. S. Gawlik, F. Gay-Balmaz, & V. Zeitlin.
Variational Discretization for Rotating Stratified Fluids.
Discrete and Continuous Dynamical Systems 34(2), 477-509 (2014).
[pdf
| doi]
E. S. Gawlik, P. Mullen, D. Pavlov, J. E. Marsden, & M. Desbrun.
Geometric, Variational Discretization of Continuum
Theories.
Physica D: Nonlinear Phenomena 240(21), 1724-1760 (2011).
[pdf
| doi]
E. S. Gawlik, J. E. Marsden, P. Du Toit, & S. Campagnola.
Lagrangian Coherent Structures in the Planar Elliptic
Restricted Three-Body Problem.
Celestial Mechanics and
Dynamical Astronomy 103, 227-249 (2009).
[pdf
| doi]
S. Yockel, E. S. Gawlik, & A. K. Wilson.
Structure and Stability of the Organo-Noble Gas Molecules
XNgCCX and XNgCCNgX (Ng = Kr, Ar; X = F, Cl).
Journal of Physical Chemistry A 111, 11261-11268 (2007).
[doi]
Conference Proceedings / Book Chapters /
Other Articles
F. Gay-Balmaz & E. S. Gawlik.
Geometric Variational Finite Element Discretizations for Fluids.
IFAC-PapersOnLine, 54(19), 8-12 (2021).
[pdf | doi]
E. S. Gawlik.
Finite Element Methods for Geometric Evolution Equations.
In: F. Nielsen and F. Barbaresco (Eds.), Geometric Science of Information.
Lecture Notes in Computer Science. Basel, Switzerland: Springer (2019).
[pdf | doi]
M. M. Chiaramonte, E. S. Gawlik, H. Kabaria, & A. J. Lew.
Universal Meshes for the Simulation of Brittle Fracture and
Moving Boundary Problems. In: K. Weinberg & A. Pandolfi (Eds.),
Innovative Numerical Approaches for Materials and
Structures in Multi-Field and Multi-Scale Problems.
Lecture Notes in Applied and Computational Mechanics. Berlin,
Germany: Springer (2016).
[pdf | doi]
A. J. Lew, R. Rangarajan, M. J. Hunsweck, E. S. Gawlik,
H. Kabaria, & Y. Shen.
Universal Meshes: Enabling High-Order Simulation of Problems with
Moving Domains.
IACM Expressions, Bulletin for the International Association of
Computational Mechanics, 32, 12-16 (2013).
[pdf]
E. S. Gawlik, J. E. Marsden, S. Campagnola, & A. Moore.
Invariant Manifolds, Discrete Mechanics, and Trajectory Design
for a Mission to Titan.
19th AAS/AIAA Space Flight Mechanics Meeting, Savannah,
Georgia, AAS 09-226, 1887-1903 (2009).
[pdf]
Technical Reports
E. S. Gawlik, T. Munson, J. Sarich, & S. M. Wild.
The TAO Linearly Constrained Augmented Lagrangian Method for
PDE-Constrained Optimization.
ANL/MCS-P2003-0112 (2012).
[pdf
| link]
Theses
E. S. Gawlik.
Design and Analysis of Numerical Methods for Free- and
Moving-Boundary Problems.
Ph.D. Thesis, Stanford University, (2015).
[pdf
| link]
E. S. Gawlik.
Geometric, Variational Discretization of Continuum Theories.
Undergraduate Senior Thesis, California Institute of Technology, (2010).
[pdf
| link]