Title: A conceptual overview of forcing
Abstract: Paul Cohen—who visited UH Mānoa in the 1990s—introduced the method of forcing to prove that the failure of the continuum hypothesis is consistent with ZFC, the standard base axioms for set theory. Since then it has become a cardinal tool within set theory, being the main method for proving independence results and even enjoys use in proving ZFC results. In this talk I will give an introduction to forcing, focusing on the big picture ideas.
This talk is a sequel to my previous talk and a prequel to my next talk.
Title: Forcing as a computational process
Abstract: In this talk we will consider computable structure theoretical aspects of forcing. Given an oracle for a countable model of set theory $M$, to what extent can we compute information about forcing extensions $M[G]$? The main theorem I will present gives a robustly affirmative answer in several senses.
* Given an oracle for the atomic diagram of a countable model of set theory $M$, then for any forcing notion $\mathbb P \in M$ we can compute an $M$-generic filter $G \subseteq \mathbb P$.
* From the $\Delta_0$ diagram for $M$ we can moreover compute the atomic diagram of the forcing extension $M[G]$, and indeed its $\Delta_0$ diagram.
* From the elementary for $M$ we can compute the elementary diagram of the forcing extension $M[G]$, and this goes level by level for the $\Sigma_n$ diagrams.
On the other hand, there is no functorial process for computing forcing extensions.
* If ZFC is consistent then there is no computable procedure (nor even a Borel procedure) which takes as input the elementary diagram for a countable model $M$ of ZFC and a partial order $\mathbb P \in M$ and returns a generic $G$ so that isomorphic copies of the same input model always result in the same corresponding isomorphic copy of $G$.
This talk is a sequel to my previous talk. The work in this talk is joint with Joel David Hamkins and Russell Miller.