Speaker: B. Kjos-Hanssen (joint work with Lei Liu)
Abstract:
Campeanu and Ho (2004) stated that it is “very difficult” to compute the number $m_n$ of maximally complex languages (in a finite automata sense) consisting of binary words of length $n$. We show that $m_n=O_{i,n}$, the number of functions from $[2^i]$ to $[2^{2^{n-i}}]$ whose range contains $[2^{2^{n-i}}-1]$, for the least $i$ for which $O_{i,n}>0$. Here, $[a]=${1,…,a}.
Title: Logic with Probability Quantifiers
Abstract: This talk is based on chapter XIV of Model-Theoretic Logics
(https://projecteuclid.org/euclid.pl/1235417263#toc). I will first give
a brief review of admissible sets and the infinitary logic which is
necessary for probability quantifiers. Then I will present the language
of probability quantifiers, as well as the proof theory, model theory,
and some examples which indicate the expressive power of the language.
Time permitting, my goal is to work towards the main completeness
theorem in section 2.3