Title: Analysis of partisan gerrymandering tools in advance of the US 2020 census

Abstract: Over the last decade, mapmakers have precisely gerrymandered political districts for the benefit of their party. In response, political scientists and mathematicians have more extensively investigated tools to quantify and understand the mathematical structure of redistricting problems. Two primary tools for determining whether a particular redistricting plan is fair are partisan-gerrymandering metrics and stochastic sampling algorithms. In this work we explore the Declination, a new metric intended to detect partisan gerrymandering. Within out analyses, we show that Declination cannot detect all forms of packing and cracking, and we compare the Declination to the Efficiency Gap. We show that these two metrics can behave quite differently, and give explicit examples where that occurs.

Title: Structural Identifiability of Biological Models

Abstract: Parameter identifiability analysis addresses the problem of which unknown parameters of a model can be determined from given input/output data. If all of the parameters of a model can be determined from data, the parameters and the model are called identifiable. However, if some subset of the parameters can not be determined from data, the model is called unidentifiable. We examine this problem for the case of perfect input/output data, i.e. absent of any experimental noise. This is called the structural identifiability problem. We show that, even in the ideal case of perfect input/output data, many biological models are structurally unidentifiable, meaning some subset of the parameters can take on an infinite number of values, yet yield the same input/output data. In this case, one attempts to reparametrize the model in terms of new parameters that can be determined from data. In this talk, we discuss the problem of finding an identifiable reparametrization and give necessary and sufficient conditions for a certain class of linear compartmental models to have an identifiable reparametrization. We also discuss finding classes of identifiable models and finding identifiable submodels of identifiable models. Our work uses graph theory and tools from computational algebra. This is joint work with Elizabeth Gross and Anne Shiu.

Title: Symmetries of Surfaces

Abstract: There are many ways to study surfaces: topologically, geometrically, dynamically, algebraically, and combinatorially, just to name a few. We will touch on some of the motivation for studying surfaces and their associated mapping class groups, which is the collection of symmetries of a surface. We will also describe a few of the ways that these different perspectives for studying surfaces come together in beautiful and sometimes unexpected ways.

I will speak about the recent paper “Condensable models of set theory” by Ali Enayat. The abstract can be found here: https://arxiv.org/abs/1910.04029