Greuling’s MA presentation

May 3, 2022 @ 3:00 pm – 4:00 pm

Jason L Greuling  Tuesday, May 3rd, 3pm Keller 302
Title: A Discrete Regge Complex
This paper is interested in a differential complex that arises in the study of finite element methods for certain partial differential equations from Riemannian geometry involving curvature. Specifically, we derive a two dimensional Regge complex that includes the linearized curvature operator, curlTcurl, and relate it to a complex that includes the linearized discrete notion of curvature on a triangulation. We establish a correspondence between the two complexes, giving a relationship between the two linearized maps.