Calendar

Oct
16
Wed
Luana @ Keller 318
Oct 16 @ 3:30 pm – 4:00 pm

The Department of Mathematics & Manoa Math Ohana  Invite you to Luana in the Afternoon Refreshments provided. All students and faculty welcome.

luana. Hawaiian. v. To be at leisure, enjoy pleasant surroundings and associates, enjoy oneself, relax, be content.

Oct
30
Wed
Luana @ Keller 318
Oct 30 @ 3:30 pm – 4:00 pm

The Department of Mathematics & Manoa Math Ohana  Invite you to Luana in the Afternoon Refreshments provided. All students and faculty welcome.

luana. Hawaiian. v. To be at leisure, enjoy pleasant surroundings and associates, enjoy oneself, relax, be content.

Apr
7
Tue
Wayne Lewis (University of Hawaiʻi) @ Lecture held in Elysium
Apr 7 @ 6:00 am – 8:00 am

Title: Adelic Theory of Protori
by Wayne Lewis (University of Hawaiʻi) as part of Topological Groups

Lecture held in Elysium.
Abstract: TBA

Apr
14
Tue
Wayne Lewis (University of Hawaiʻi) @ Lecture held in Elysium
Apr 14 @ 6:00 am – 8:00 am

Title: Classification of Finite-Dimensional Periodic LCA Groups
by Wayne Lewis (University of Hawaiʻi) as part of Topological Groups

Lecture held in Elysium.

Abstract
Generalized resolutions of protori have non-Archimedean component a periodic LCA group with finite non-Archimedean dimension. The previous session introduced the notion of non-Archimedean dimension of LCA groups. Applying published results by Dikranjan, Herfort, Hofmann, Lewis, Loth, Mader, Morris, Prodanov, Ross, and Stoyanov, we introduce new minimalist notation and accompanying definitions to clarify the structure of these groups and their Pontryagin duals, enabling a parametrization of the spectrum of resolutions of finite-dimensional protori (the Grothendieck group is a moduli space).

Apr
21
Tue
Adolf Mader (University of Hawaiʻi) @ Lecture held in Elysium
Apr 21 @ 6:00 am – 8:00 am

Title: Pontryagin Duals of Type Subgroups of Finite Rank Torsion-Free Abelian Groups
by Adolf Mader (University of Hawaiʻi) as part of Topological Groups

Lecture held in Elysium.

Abstract
Pontryagin duals of type subgroups of finite rank torsion-free abelian groups are presented. The interplay between the intrinsic study of compact abelian groups, respectively torsion-free abelian groups, is discussed (how can researchers better leverage the published results in each setting so there is a dual impact?). A result definitively qualifying, in the torsion-free category, the uniqueness of decompositions involving maximal rank completely decomposable summands is given; the formulation of the result in the setting of protori is shown to optimally generalize a well-known result regarding the splitting of maximal tori from finite-dimensional protori.

Apr
28
Tue
Dikran Dikranjan (University of Udine) @ Lecture held in Elysium
Apr 28 @ 6:00 am – 8:00 am

Title: The Connection between the von Neumann Kernel and the Zariski Topology
by Dikran Dikranjan (University of Udine) as part of Topological Groups

Lecture held in Elysium.

Abstract
Every group G carries a natural topology Z_G defined by taking as a pre-base of the family of all closed sets the solution sets of all one-variable equations in the group of the form (a_1)x^{ε_1}(a2)x^{ε_2}…(a_n)x^{ε_n} = 1, where a_i ∈ G, ε_i = ±1 for i = 1,2,…,n, n ∈ N. The topology was explicitly introduced by Roger Bryant in 1978, who named it the verbal topology, but the name Zariski topology was universally applied subsequently. As a matter of fact, this topology implicitly appeared in a series of papers by Markov in the 1940’s in connection to his celebrated problem concerning unconditionally closed sets: sets which are closed in any Hausdorff group topology on G. These are the closed sets in the topology M_G obtained as the intersection of all Hausdorff group topologies on G, which we call the Markov topology, although this topology did not explicitly appear in Markov’s papers. Both Z_G and M_G are T1 topologies and M_G ≥ Z_G, but they need not be group topologies. One can use these topologies to formulate Markov’s problem: does the equality M_G = Z_G hold? Markov proved that M_G = Z_G if the group is countable and mentioned that the equality holds also for arbitrary abelian groups (so one can speak about the Markov-Zariski topology of an abelian group). The aim of the presentation is to expose this history, to describe some problems of Markov related to these topologies, and to apply the theory to give a solution to the Comfort-Protasov-Remus problem on minimally almost periodic topologies of abelian groups. This problem is associated to a more general problem of Gabriyelyan concerning the realisation of the von Neumann kernel n(G) of a topological group; that is, the intersection of the kernels of the continuous homomorphisms G → T into the circle group. More precisely, given a pair consisting of an abelian group G and a subgroup H, one asks whether there is a Hausdorff group topology τ on G such that n(G,τ) = H. Since (G,τ) is minimally almost periodic precisely when n(G) = G, the solution of this more general problem also gives a solution to the Comfort-Protasov-Remus problem.