Logic seminar
Oct 9 @ 2:30 pm – 3:30 pm
Logic seminar: Jack Yoon
Oct 16 @ 2:30 pm – 3:30 pm

Assessing the Reverse Mathematical Strength of Gratzer-Schmidt Theorem
Gratzer-Schmidt theorem in lattice theory states that all complete and compactly generated lattices are isomorphic to the congruence lattice of an algebra. There has been an effort to assess the strength of this theorem in the reverse mathematical setting. I will discuss my recent progress on this topic and its potential implications.

Colloquium: Marion Campisi (SJSU) @ Keller 401
Oct 18 @ 3:30 pm – 4:30 pm

Title: Analysis of partisan gerrymandering tools in advance of the US 2020 census

Abstract: Over the last decade, mapmakers have precisely gerrymandered political districts for the benefit of their party. In response, political scientists and mathematicians have more extensively investigated tools to quantify and understand the mathematical structure of redistricting problems. Two primary tools for determining whether a particular redistricting plan is fair are partisan-gerrymandering metrics and stochastic sampling algorithms. In this work we explore the Declination, a new metric intended to detect partisan gerrymandering. Within out analyses, we show that Declination cannot detect all forms of packing and cracking, and we compare the Declination to the Efficiency Gap. We show that these two metrics can behave quite differently, and give explicit examples where that occurs.

Logic seminar: Jack Yoon (II)
Oct 23 @ 2:30 pm – 3:30 pm
Applied Math Seminar: Nicolette Meshkat (Santa Clara University) @ Keller 402
Oct 23 @ 3:30 pm – 4:30 pm

Title: Structural Identifiability of Biological Models

Abstract: Parameter identifiability analysis addresses the problem of which unknown parameters of a model can be determined from given input/output data. If all of the parameters of a model can be determined from data, the parameters and the model are called identifiable. However, if some subset of the parameters can not be determined from data, the model is called unidentifiable. We examine this problem for the case of perfect input/output data, i.e. absent of any experimental noise. This is called the structural identifiability problem. We show that, even in the ideal case of perfect input/output data, many biological models are structurally unidentifiable, meaning some subset of the parameters can take on an infinite number of values, yet yield the same input/output data. In this case, one attempts to reparametrize the model in terms of new parameters that can be determined from data. In this talk, we discuss the problem of finding an identifiable reparametrization and give necessary and sufficient conditions for a certain class of linear compartmental models to have an identifiable reparametrization. We also discuss finding classes of identifiable models and finding identifiable submodels of identifiable models. Our work uses graph theory and tools from computational algebra. This is joint work with Elizabeth Gross and Anne Shiu.

Colloquium: Marissa Loving (Georgia Tech) @ Keller Hall 401
Oct 29 @ 4:00 pm – 5:00 pm

Title: Symmetries of Surfaces

Abstract: There are many ways to study surfaces: topologically, geometrically, dynamically, algebraically, and combinatorially, just to name a few. We will touch on some of the motivation for studying surfaces and their associated mapping class groups, which is the collection of symmetries of a surface. We will also describe a few of the ways that these different perspectives for studying surfaces come together in beautiful and sometimes unexpected ways.

Logic seminar: Kameryn Williams
Oct 30 @ 2:30 pm – 3:30 pm

I will speak about the recent paper “Condensable models of set theory” by Ali Enayat. The abstract can be found here:

PhD defense for Don Krasky @ Keller 401
Nov 6 @ 3:00 pm – 5:00 pm