UH Manoa Math Department Colloquia and Distinguished lectures
For information about seminars see the seminar page
Spring 2025
TBD
Jordan Ellenberg (U. Wisconsin- Madison)
TBD
Distinguished lecture series
Fall 2024
12/13 3:30-4:30 Keller 302
Marta Pavelka
From graphs to complexes
11/21 3:30-4:30 Keller302
Kevin Schreve (Louisiana State University)
Homology growth and cubulated manifolds
11/15
Herman Servatius (Worcester Polytechnic Institute)
Rigidity and movability of configurations in the projective plane.
- Tuesday April 23rd, 5:30pm. Public lecture accessible to anyonemathematically curious.- Thursday April 25th, 3:30pm. Colloquium accessible to math majors.- Friday April 36th, 3:30pm. Seminar accessible to advanced math majors.
Jump into our Google Calendar to browse colloquia and other events recorded in a specific year. (A couple of notable events are indicated in parentheses.)
Visiting mathematicians from UC San Diego, Alina Bucur and Kiran Kedlaya, will give two number theory talks on Thursday, February 24 in Keller 301.
Schedule:
3-3:45 PM Kiran Kedlaya
The relative class number one problem for function fieldsAbstract: Gauss conjectured that there are nine imaginary quadratic fields of class number 1; this was resolved in the 20th century by work of Baker, Heegner, and Stark. In between, Artin had introduced the analogy between number fields and function fields, the latter being finite extensions of the field of rational functions over a finite field. In this realm, the class number 1 problem admits multiple analogues; we recall some of these, one of which was “resolved” in 1975 and then falsified (and corrected) in 2014, and another one of which is a brand-new theorem in which computer calculations (in SageMath and Magma) play a pivotal role.
3:45-4:15 PM
Q&A, break, refreshments
4:15-5 PM Alina Bucur Counting points on curves over finite fields
Abstract: A curve is a one dimensional space cut out by polynomial equations. In particular, one can consider curves over finite fields, which means the polynomial equations should have coefficients in some finite field and that points on the curve are given by values of the variables in the finite field that satisfy the given polynomials. A basic question is how many points such a curve has, and for a family of curves one can study the distribution of this statistic. We will give concrete examples of families in which this distribution is known or predicted, and give a sense of the different kinds of mathematics that are used to study different families. This is joint work with Chantal David, Brooke Feigon, Kiran S. Kedlaya, and Matilde Lalin.
Graduate school can be an alternating series of rewarding and challenging experiences. Piper Harron earned her PhD in mathematics from Princeton University in January 2016, after starting in 2003, leaving in 2009, having her first child in 2011, and her second child in 2014. She described her unique journey in a talk for the UH Manoa Women’s Studies Fall 2016 Colloquium Series.